BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 6996797)

  • 1. Nutrient-limited yeast growth in Candida albicans: effect on yeast-mycelial transition.
    Bell WM; Chaffin WL
    Can J Microbiol; 1980 Jan; 26(1):102-5. PubMed ID: 6996797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of yeast growth conditions on yeast-mycelial transition in Candida albicans.
    Bell WM; Chaffin WL
    Mycopathologia; 1983 Dec; 84(1):41-4. PubMed ID: 6369144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proline-induced germ-tube formation in Candida albicans: role of proline uptake and nitrogen metabolism.
    Holmes AR; Shepherd MG
    J Gen Microbiol; 1987 Nov; 133(11):3219-28. PubMed ID: 3328774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pH, carbon source and K+ on the Na+-inhibited germ tube formation of Candida albicans.
    Biswas SK; Yokoyama K; Nishimura K; Miyaji M
    Med Mycol; 2000 Oct; 38(5):363-9. PubMed ID: 11092383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between the glucose uptake system and growth cessation in Candida albicans.
    Cho T; Hagihara Y; Kaminishi H; Watanabe K
    J Med Vet Mycol; 1994 Dec; 32(6):461-6. PubMed ID: 7738728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of culture conditions on the in vitro infection of fibroblasts by Candida albicans.
    Merkel GJ
    Can J Microbiol; 1992 Feb; 38(2):135-42. PubMed ID: 1521187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of mycelial type of development in Candida albicans by low glucose concentration.
    Hrmová M; Drobnica L
    Mycopathologia; 1981 Nov; 76(2):83-96. PubMed ID: 7033795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of cytoplasmic proteins during yeast bud and germ tube formation in Candida albicans.
    Brown LA; Chaffin WL
    Can J Microbiol; 1981 Jun; 27(6):580-5. PubMed ID: 7020895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation.
    Sullivan PA; Yin CY; Molloy C; Templeton MD; Shepherd MG
    Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutritional factors determine germ tube formation in Candida albicans.
    Holmes AR; Shepherd MG
    J Med Vet Mycol; 1988 Apr; 26(2):127-31. PubMed ID: 3047355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid synthesis during reinitiation of growth from stationary phase cultures of Candida albicans.
    Ballmann GE; Caffin WL
    Mycopathologia; 1979 Mar; 67(1):39-43. PubMed ID: 377085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential profiles of soluble proteins during the initiation of morphogenesis in Candida albicans.
    Niimi M; Shepherd MG; Monk BC
    Arch Microbiol; 1996 Oct; 166(4):260-8. PubMed ID: 8824149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starvation and germ tube formation in the exponential phase Candida albicans.
    Cho T; Hamatake H; Kaminishi H; Kuroki A; Suehara T; Suehara Y; Sakima T; Hagihara Y; Watanabe K
    Fukuoka Shika Daigaku Gakkai Zasshi; 1989; 16(4):510-21. PubMed ID: 2562099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans.
    Cassone A; Sullivan PA; Shepherd MG
    Microbiologica; 1985 Jan; 8(1):85-99. PubMed ID: 3883103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of aggregation accompanying morphogenesis in Candida albicans.
    Holmes AR; Cannon RD; Shepherd MG
    Oral Microbiol Immunol; 1992 Feb; 7(1):32-7. PubMed ID: 1528622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of some factors on the dimorphism of Candida albicans.
    Vidotto V; Picerno G; Caramello S; Paniate G
    Mycopathologia; 1988 Dec; 104(3):129-35. PubMed ID: 3070383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some factors affecting the transformation of the yeast-like to the mycelial-like forms of Candida albicans.
    Ton SH; Karunairatnam MC
    Southeast Asian J Trop Med Public Health; 1976 Mar; (1):72-6. PubMed ID: 800285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of carbon dioxide on the growth and form of Candida albicans.
    Sims W
    J Med Microbiol; 1986 Nov; 22(3):203-8. PubMed ID: 3095550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological commitment in Candida albicans.
    Chaffin WL; Wheeler DE
    Can J Microbiol; 1981 Jan; 27(1):131-7. PubMed ID: 7011513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain variation and morphogenesis of yeast- and mycelial-phase Candida albicans in low-sulfate, synthetic medium.
    Manning M; Mitchell TG
    J Bacteriol; 1980 May; 142(2):714-9. PubMed ID: 6991484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.