BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6997040)

  • 1. The role of hydrogen translocating shuttles during ethanol oxidation in hepatocytes from euthyroid and hyperthyroid rats.
    Hensgens LA; Nieuwenhuis BJ; van der Meer R; Meijer AJ
    Eur J Biochem; 1980; 108(1):39-45. PubMed ID: 6997040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of acetaldehyde on activity of shuttles for the transport of reducing equivalents into the mitochondria.
    Cederbaum AI; Lieber CS; Rubin E
    FEBS Lett; 1973 Nov; 37(1):89-92. PubMed ID: 4356722
    [No Abstract]   [Full Text] [Related]  

  • 3. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L; Bremer J; Davis EJ
    J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen transfer into mitochondria in the metabolism of ethanol. I. Oxidation of extramitochondrial reduced nicotinamide-adenine dinucleotide by mitochondria.
    Hassinen I
    Ann Med Exp Biol Fenn; 1967; 45(1):35-45. PubMed ID: 4294130
    [No Abstract]   [Full Text] [Related]  

  • 5. Reducing-equivalent transfer to the mitochondria during gluconeogenesis and ureogenesis in hepatocytes from rats of different thyroid status.
    Gregory RB; Phillips JW; Berry MN
    Biochim Biophys Acta; 1992 Oct; 1137(1):34-8. PubMed ID: 1356445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo and in vitro adenosine stimulation of ethanol oxidation by hepatocytes, and the role of the malate-aspartate shuttle.
    Hernández-Muñoz R; Díaz-Muñoz M; Chagoya de Sánchez V
    Biochim Biophys Acta; 1987 Sep; 930(2):254-63. PubMed ID: 2887212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG
    Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thyroid hormone and dehydroepiandrosterone permit gluconeogenic hormone responses in hepatocytes.
    Kneer N; Lardy H
    Arch Biochem Biophys; 2000 Mar; 375(1):145-53. PubMed ID: 10683260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The malate/aspartate shuttle and pyruvate kinase as targets involved in the stimulation of gluconeogenesis by phenylephrine.
    Leverve XM; Verhoeven AJ; Groen AK; Meijer AJ; Tager JM
    Eur J Biochem; 1986 Mar; 155(3):551-6. PubMed ID: 3956499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular injury to mitochondria produced by ethanol and acetaldehyde.
    Cederbaum AI; Rubin E
    Fed Proc; 1975 Oct; 34(11):2045-51. PubMed ID: 170139
    [No Abstract]   [Full Text] [Related]  

  • 11. Rate-limiting factors in the oxidation of ethanol by isolated rat liver cells.
    Meijer AJ; van Woerkom GM; Williamson JR; Tager JM
    Biochem J; 1975 Aug; 150(2):205-9. PubMed ID: 1180914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells.
    Grivell AR; Korpelainen EI; Williams CJ; Berry MN
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):665-71. PubMed ID: 7654209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the malate-aspartate shuttle in the metabolism of ethanol in vivo.
    Nordmann R; Petit MA; Nordmann J
    Biochem Pharmacol; 1975 Jan; 24(1):139-43. PubMed ID: 1122254
    [No Abstract]   [Full Text] [Related]  

  • 14. Acute and chronic ethanol treatment in vivo increases malate-aspartate shuttle capacity in perfused rat liver.
    Sugano T; Handler JA; Yoshihara H; Kizaki Z; Thurman RG
    J Biol Chem; 1990 Dec; 265(35):21549-53. PubMed ID: 2254313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the subcellular distribution of metabolites due to ethanol oxidation in the perfused rat liver.
    Soboll S; Heldt HW; Scholz R
    Hoppe Seylers Z Physiol Chem; 1981 Mar; 362(3):247-60. PubMed ID: 7227978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of non-ADH pathways to ethanol oxidation in hepatocytes from fed and hyperthyroid rats. Effect of fructose and xylitol.
    Vind C; Grunnet N
    Biochem Pharmacol; 1985 Mar; 34(5):655-61. PubMed ID: 3156600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol oxidation by isolated hepatocytes from ethanol-treated and control rats; factors contributing to the metabolic adaptation after chronic ethanol consumption.
    Cederbaum AI; Dicker E; Lieber CS; Rubin E
    Biochem Pharmacol; 1978 Jan; 27(1):7-15. PubMed ID: 563723
    [No Abstract]   [Full Text] [Related]  

  • 18. Contribution of "substrate shuttles" in the transport of extramitochondrial reducing equivalents by hepatic mitochondria from chronic alcohol-fed mice.
    Rawat AK; Kuriyama K
    Arch Biochem Biophys; 1972 Sep; 152(1):44-52. PubMed ID: 4342113
    [No Abstract]   [Full Text] [Related]  

  • 19. Mitochondrial shuttle activities in hyperthyroid and normal rats and guinea pigs.
    Tobin RB; Berdanier CD; Ecklund RE; DeVore V; Caton C
    J Environ Pathol Toxicol; 1979 Dec; 3(1-2):289-305. PubMed ID: 232712
    [No Abstract]   [Full Text] [Related]  

  • 20. The influence of thyroid state on hepatic glycolysis.
    Gregory RB; Berry MN
    Eur J Biochem; 1995 Apr; 229(2):344-8. PubMed ID: 7744057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.