These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 6997042)

  • 21. [The formation of higher alcohols by amino acid auxotrophic mutants of Saccharomyces cerevisiae. I. The conversion of amino acids to higher alcohols (author's transl)].
    Vollbrecht D; Radler F
    Arch Mikrobiol; 1973 Dec; 94(4):351-8. PubMed ID: 4593312
    [No Abstract]   [Full Text] [Related]  

  • 22. Dynamic compartmentation of vacuolar amino acids in Penicillium cyclopium. Cytosolic adenylates act as a control signal for efflux into the cytosol.
    Roos W; Schulze R; Steighardt J
    J Biol Chem; 1997 Jun; 272(25):15849-55. PubMed ID: 9188483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prevacuolar compartment morphology in vps mutants of Saccharomyces cerevisiae.
    Hedman JM; Eggleston MD; Attryde AL; Marshall PA
    Cell Biol Int; 2007 Oct; 31(10):1237-44. PubMed ID: 17543551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Replenishment and mobilization of intracellular nitrogen pools decouples wine yeast nitrogen uptake from growth.
    Gutiérrez A; Sancho M; Beltran G; Guillamon JM; Warringer J
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3255-65. PubMed ID: 26754818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N5-phosphonoacetyl-L-ornithine (PALO): a convenient synthesis and investigation of influence on regulation of amino acid biosynthetic genes in Saccharomyces cerevisiae.
    Johnson B; Steadman R; Patefield KD; Bunker JJ; Atkin AL; Dussault P
    Bioorg Med Chem Lett; 2011 Apr; 21(8):2351-3. PubMed ID: 21421312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Avt5p is required for vacuolar uptake of amino acids in the fission yeast Schizosaccharomyces pombe.
    Chardwiriyapreecha S; Mukaiyama H; Sekito T; Iwaki T; Takegawa K; Kakinuma Y
    FEBS Lett; 2010 Jun; 584(11):2339-45. PubMed ID: 20388511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. gamma-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione.
    Mehdi K; Thierie J; Penninckx MJ
    Biochem J; 2001 Nov; 359(Pt 3):631-7. PubMed ID: 11672438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The participation of ornithine and citrulline in the regulation of arginine metabolism in Saccharomyces cerevisiae.
    Ramos F; Thuriaux P; Wiame JM; Bechet J
    Eur J Biochem; 1970 Jan; 12(1):40-7. PubMed ID: 5434282
    [No Abstract]   [Full Text] [Related]  

  • 29. Compartmentation of the amino acid pool in Saccharomycopsis lipolytica.
    Sawnor-Korszyńska D; Morzycka E; Zaborowska D; Raczyńska-Bojanowska K
    Acta Biochim Pol; 1977; 24(1):75-85. PubMed ID: 868439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Genetic regulation of arginine metabolism in fungi (author's transl)].
    Wegleński P
    Postepy Biochem; 1974; 20(3):219-43. PubMed ID: 4603558
    [No Abstract]   [Full Text] [Related]  

  • 31. Transport of Amino Acids across the Vacuolar Membrane of Yeast: Its Mechanism and Physiological Role.
    Kawano-Kawada M; Kakinuma Y; Sekito T
    Biol Pharm Bull; 2018; 41(10):1496-1501. PubMed ID: 30270317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Basic amino acids and inorganic polyphosphates in Neurospora crassa: independent regulation of vacuolar pools.
    Cramer CL; Vaughn LE; Davis RH
    J Bacteriol; 1980 Jun; 142(3):945-52. PubMed ID: 6445898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compartmentation and regulation of fungal metabolism: genetic approaches.
    Davis RH
    Annu Rev Genet; 1975; 9():39-65. PubMed ID: 129029
    [No Abstract]   [Full Text] [Related]  

  • 34. Metabolic engineering of arginine permeases to reduce the formation of urea in Saccharomyces cerevisiae.
    Zhang P; Hu X
    World J Microbiol Biotechnol; 2018 Mar; 34(3):47. PubMed ID: 29536194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I.
    Oda MN; Scott SV; Hefner-Gravink A; Caffarelli AD; Klionsky DJ
    J Cell Biol; 1996 Mar; 132(6):999-1010. PubMed ID: 8601598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alteration in the amino acid content of yeast during growth under various nutritional conditions.
    Moat AG; Ahmad F; Alexander JK; Barnes IJ
    J Bacteriol; 1969 May; 98(2):573-8. PubMed ID: 5784213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro reconstitution of cytoplasm to vacuole protein targeting in yeast.
    Scott SV; Klionsky DJ
    J Cell Biol; 1995 Dec; 131(6 Pt 2):1727-35. PubMed ID: 8557740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence that specific and "general" control of ornithine carbamoyltransferase production occurs at the level of transcription in Saccharomyces cerevisiae.
    Messenguy F; Cooper TG
    J Bacteriol; 1977 Jun; 130(3):1253-61. PubMed ID: 324980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway.
    Klionsky DJ; Cueva R; Yaver DS
    J Cell Biol; 1992 Oct; 119(2):287-99. PubMed ID: 1400574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole.
    Darsow T; Rieder SE; Emr SD
    J Cell Biol; 1997 Aug; 138(3):517-29. PubMed ID: 9245783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.