These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 6997042)

  • 41. Mutants of Saccharomyces cerevisiae with defective vacuolar function.
    Kitamoto K; Yoshizawa K; Ohsumi Y; Anraku Y
    J Bacteriol; 1988 Jun; 170(6):2687-91. PubMed ID: 3131305
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vacuolar compartmentation of the cadmium-glutathione complex protects Saccharomyces cerevisiae from mutagenesis.
    Adamis PD; Panek AD; Eleutherio EC
    Toxicol Lett; 2007 Aug; 173(1):1-7. PubMed ID: 17644279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic and biochemical analysis of the yeast plasma membrane Ssy1p-Ptr3p-Ssy5p sensor of extracellular amino acids.
    Forsberg H; Ljungdahl PO
    Mol Cell Biol; 2001 Feb; 21(3):814-26. PubMed ID: 11154269
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Mutation affecting the regulation of ornithine transcarbamylase synthesis in Saccharomyces cerevisiae].
    Bechet J; Wiame JM; Grenson M
    Arch Int Physiol Biochim; 1965 Jan; 73(1):137-9. PubMed ID: 4158393
    [No Abstract]   [Full Text] [Related]  

  • 45. Vba4p, a vacuolar membrane protein, is involved in the drug resistance and vacuolar morphology of Saccharomyces cerevisiae.
    Kawano-Kawada M; Pongcharoen P; Kawahara R; Yasuda M; Yamasaki T; Akiyama K; Sekito T; Kakinuma Y
    Biosci Biotechnol Biochem; 2016; 80(2):279-87. PubMed ID: 26325352
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of pyc1 encoding pyruvate carboxylase isozyme I by nitrogen sources in Saccharomyces cerevisiae.
    Huet C; Menendez J; Gancedo C; François JM
    Eur J Biochem; 2000 Dec; 267(23):6817-23. PubMed ID: 11082192
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations.
    Beltran G; Novo M; Rozès N; Mas A; Guillamón JM
    FEMS Yeast Res; 2004 Mar; 4(6):625-32. PubMed ID: 15040951
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Loss of phosphatidylserine synthesis results in aberrant solute sequestration and vacuolar morphology in Saccharomyces cerevisiae.
    Hamamatsu S; Shibuya I; Takagi M; Ohta A
    FEBS Lett; 1994 Jul; 348(1):33-6. PubMed ID: 8026579
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vacuolar amino acid transporters upregulated by exogenous proline and involved in cellular localization of proline in Saccharomyces cerevisiae.
    Nishida I; Watanabe D; Tsolmonbaatar A; Kaino T; Ohtsu I; Takagi H
    J Gen Appl Microbiol; 2016 Jul; 62(3):132-9. PubMed ID: 27246536
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ON THE SYNTHESIS OF ORNITHINE CARBAMOYLTRANSFERASE IN BIOTIN-DEFICIENT SACCHAROMYCES CEREVISIAE.
    DIXON B; ROSE AH
    J Gen Microbiol; 1964 Feb; 34():229-40. PubMed ID: 14135530
    [No Abstract]   [Full Text] [Related]  

  • 51. Characterization of amino acid pools in the vacuolar compartment of Saccharomyces cerevisiae.
    Wiemken A; Dürr M
    Arch Microbiol; 1974; 101(1):45-57. PubMed ID: 4374149
    [No Abstract]   [Full Text] [Related]  

  • 52. A role in vacuolar arginine transport for yeast Btn1p and for human CLN3, the protein defective in Batten disease.
    Kim Y; Ramirez-Montealegre D; Pearce DA
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15458-62. PubMed ID: 14660799
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amino acid pools in cultured muscle cells.
    Low RB; Stirewalt WS; Rittling SR; Woodworth RC
    J Cell Biochem; 1984; 25(3):123-9. PubMed ID: 6566676
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interaction between arginase and L-ornithine carbamoyltransferase in Saccharomyces cerevisiae. The regulatory sites of arginase.
    Penninckx M
    Eur J Biochem; 1975 Oct; 58(2):533-8. PubMed ID: 1102307
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic and environmental factors influencing glutathione homeostasis in Saccharomyces cerevisiae.
    Perrone GG; Grant CM; Dawes IW
    Mol Biol Cell; 2005 Jan; 16(1):218-30. PubMed ID: 15509654
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accumulation and intracellular compartmentation of lithium ions in Saccharomyces cerevisiae.
    Perkins J; Gadd GM
    FEMS Microbiol Lett; 1993 Mar; 107(2-3):255-60. PubMed ID: 8472907
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intracellular compartmentation and transport of metabolites.
    Davis RH; Bowman BJ; Weiss RL
    J Supramol Struct; 1978; 9(4):473-88. PubMed ID: 750761
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell cycle-linked vacuolar pH dynamics regulate amino acid homeostasis and cell growth.
    Okreglak V; Ling R; Ingaramo M; Thayer NH; Millett-Sikking A; Gottschling DE
    Nat Metab; 2023 Oct; 5(10):1803-1819. PubMed ID: 37640943
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy.
    Yang Z; Huang J; Geng J; Nair U; Klionsky DJ
    Mol Biol Cell; 2006 Dec; 17(12):5094-104. PubMed ID: 17021250
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae.
    Suzuki T; Sugiyama M; Wakazono K; Kaneko Y; Harashima S
    J Biosci Bioeng; 2012 Apr; 113(4):421-30. PubMed ID: 22177309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.