These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 6997285)

  • 21. The eosin-5-maleimide binding site on human erythrocyte band 3: investigation of membrane sidedness and location of charged residues by triplet state quenching.
    Pan RJ; Cherry RJ
    Biochemistry; 1998 Jul; 37(28):10238-45. PubMed ID: 9665731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Behavior of Cys-707 (SH1) in myosin associated with ATP hydrolysis revealed with a fluorescent probe linked directly to the sulfur atom.
    Hiratsuka T
    J Biol Chem; 1993 Nov; 268(33):24742-50. PubMed ID: 8227033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Smooth muscle myosin subfragment-1 is a kinetic analogue for heavy meromyosin in the extended conformation.
    Drew JS; White MP; Stein LA
    Cell Motil Cytoskeleton; 1993; 26(4):291-300. PubMed ID: 8299145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-headed binding of the unphosphorylated nonmuscle heavy meromyosin.ADP complex to actin.
    Kovács M; Tóth J; Nyitray L; Sellers JR
    Biochemistry; 2004 Apr; 43(14):4219-26. PubMed ID: 15065866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational changes at the highly reactive cystein and lysine regions of skeletal muscle myosin induced by formation of transition state analogues.
    Maruta S; Homma K; Ohki T
    J Biochem; 1998 Sep; 124(3):578-84. PubMed ID: 9722668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quick-freeze deep-etch electron microscopy of the actin-heavy meromyosin complex during the in vitro motility assay.
    Katayama E
    J Mol Biol; 1998 May; 278(2):349-67. PubMed ID: 9571057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prodan fluorescence reflects differences in nucleotide-induced conformational states in the myosin head and allows continuous visualization of the ATPase reactions.
    Hiratsuka T
    Biochemistry; 1998 May; 37(20):7167-76. PubMed ID: 9585528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformational dynamics of DnaB helicase upon DNA and nucleotide binding: analysis by intrinsic tryptophan fluorescence quenching.
    Flowers S; Biswas EE; Biswas SB
    Biochemistry; 2003 Feb; 42(7):1910-21. PubMed ID: 12590577
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electric dipole theory and thermodynamics of actomyosin molecular motor in muscle contraction.
    Lampinen MJ; Noponen T
    J Theor Biol; 2005 Oct; 236(4):397-421. PubMed ID: 15919094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic and spectroscopic characterization of fluorescent ribose-modified ATP analogs upon interaction with skeletal muscle myosin subfragment 1.
    Conibear PB; Jeffreys DS; Seehra CK; Eaton RJ; Bagshaw CR
    Biochemistry; 1996 Feb; 35(7):2299-308. PubMed ID: 8652570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational changes of an Hsp70 molecular chaperone induced by nucleotides, polypeptides, and N-ethylmaleimide.
    Chirico WJ; Markey ML; Fink AL
    Biochemistry; 1998 Sep; 37(39):13862-70. PubMed ID: 9753476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective modification of myosin SH1 with 1,2,4-trinitrobenzene. VIII. Thiols of myosin.
    Sekine T; Takahashi S; Hikita S; Sutoh N; Satake K
    J Biochem; 1984 Jul; 96(1):27-33. PubMed ID: 6238023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Movement of Cys-697 in myosin ATPase associated with ATP hydrolysis.
    Hiratsuka T
    J Biol Chem; 1992 Jul; 267(21):14941-8. PubMed ID: 1386082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence properties of 2' (or 3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate and its use in the study of binding to heavy meromyosin ATPase.
    Hiratsuka T
    Biochim Biophys Acta; 1976 Nov; 453(1):293-7. PubMed ID: 11824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The MgADP-induced decrease of the SH1-SH2 fluorescence resonance energy transfer distance of myosin subfragment 1 occurs in two kinetic steps.
    Garland F; Gonsoulin F; Cheung HC
    J Biol Chem; 1988 Aug; 263(24):11621-3. PubMed ID: 3403549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ATP-induced dynamic fluorescence changes of a N-[p-(2-benzimidazolyl)phenyl]maleimide probe at Cys241 in the alpha-chain of pig stomach H+,K+-ATPase.
    Eguchi H; Kaya S; Shimada A; Ootomo Y; Nomoto K; Kikuchi M; Usida Y; Taniguchi K
    J Biochem; 1997 Sep; 122(3):659-65. PubMed ID: 9348099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inter-sulfhydryl distances in plasma fibronectin determined by fluorescence energy transfer: effect of environmental factors.
    Wolff CE; Lai CS
    Biochemistry; 1990 Apr; 29(13):3354-61. PubMed ID: 2334697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fourier transform infrared absorption studies on the sulfhydryl groups in heavy meromyosin.
    Nakanishi M; Yamada T; Shimizu H; Tsuboi M
    Biochim Biophys Acta; 1981 Nov; 671(1):99-103. PubMed ID: 7030404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphical evaluation of alkylation of myosin's SH1 and SH2: the N-phenylmaleimide reaction.
    Xie L; Li WX; Barnett VA; Schoenberg M
    Biophys J; 1997 Feb; 72(2 Pt 1):858-65. PubMed ID: 9017211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence quenching at interfaces and the permeation of acrylamide and iodide across phospholipid bilayers.
    Moro F; Goñi FM; Urbaneja MA
    FEBS Lett; 1993 Sep; 330(2):129-32. PubMed ID: 8365482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.