These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6997896)

  • 1. Mechanisms of reaction of hemeproteins with oxygen and hydrogen peroxide in the oxidation of organic substrates.
    Castro CE
    Pharmacol Ther; 1980; 10(2):171-89. PubMed ID: 6997896
    [No Abstract]   [Full Text] [Related]  

  • 2. Catalases versus peroxidases: DFT investigation of H₂O₂ oxidation in models systems and implications for heme protein engineering.
    Vidossich P; Alfonso-Prieto M; Rovira C
    J Inorg Biochem; 2012 Dec; 117():292-7. PubMed ID: 22883961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic chemistry of hemeproteins.
    Dolphin D
    Keio J Med; 1989 Mar; 38(1):65-9. PubMed ID: 2716219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enzymic reduction system for metmyoglobin and methemoglobin, and its application to functional studies of oxygen carriers.
    Hayashi A; Suzuki T; Shin M
    Biochim Biophys Acta; 1973 Jun; 310(2):309-16. PubMed ID: 4146292
    [No Abstract]   [Full Text] [Related]  

  • 5. Oxidation of low-density lipoprotein by hemoglobin-hemichrome.
    Bamm VV; Tsemakhovich VA; Shaklai N
    Int J Biochem Cell Biol; 2003 Mar; 35(3):349-58. PubMed ID: 12531248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Chemistry on activation of small molecules by metalloenzymes].
    Shiro Y; Watanabe Y
    Seikagaku; 2004 May; 76(5):429-39. PubMed ID: 15212231
    [No Abstract]   [Full Text] [Related]  

  • 7. STUDIES ON THE OXIDATION-REDUCTION POTENTIALS OF HEME PROTEINS. IV. THE KINETICS OF OXIDATION OF HEMOGLOBIN AND MYOGLOBIN BY FERRICYANIDE.
    ANTONINI E; BRUNORI M; WYMAN J
    Biochemistry; 1965 Mar; 4():545-51. PubMed ID: 14311627
    [No Abstract]   [Full Text] [Related]  

  • 8. [Physical enzymology (author's transl)].
    Iizuka T
    Seikagaku; 1975 Dec; 47(12):1061-90. PubMed ID: 176285
    [No Abstract]   [Full Text] [Related]  

  • 9. The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450- and peroxidase-catalyzed N-demethylation reactions.
    Miwa GT; Walsh JS; Kedderis GL; Hollenberg PF
    J Biol Chem; 1983 Dec; 258(23):14445-9. PubMed ID: 6643495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible control of hydrogen peroxide production and degradation in microsomes during mixed function oxidation reaction.
    Hildebrandt AG; Speck M; Roots I
    Biochem Biophys Res Commun; 1973 Oct; 54(3):968-75. PubMed ID: 4148131
    [No Abstract]   [Full Text] [Related]  

  • 11. Oxidation-reduction reactions of hemeproteins.
    Castro CE; Bartnicki E; Robertson C; Havlin R; Davis H; Osborn T
    Ann N Y Acad Sci; 1975 Apr; 244():132-41. PubMed ID: 237452
    [No Abstract]   [Full Text] [Related]  

  • 12. Coupling of dihydroriboflavin oxidation to the formation of the higher valence states of hemeproteins.
    Xu F; Hultquist DE
    Biochem Biophys Res Commun; 1991 Nov; 181(1):197-203. PubMed ID: 1659807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the pseudoperoxidatic activity of soybean leghemoglobin and sperm whale myoglobin.
    Sievers G; Rönnberg M
    Biochim Biophys Acta; 1978 Apr; 533(2):293-301. PubMed ID: 565653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specificity for the enzyme structure.
    Savitsky PA; Gazaryan IG; Tishkov VI; Lagrimini LM; Ruzgas T; Gorton L
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):579-83. PubMed ID: 10359640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-electron reduction in oxyform of hemoproteins.
    Kobayashi K; Hayashi K
    J Biol Chem; 1981 Dec; 256(23):12350-4. PubMed ID: 7298661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haemichrome formation from haemoglobin subunits by hydrogen peroxide.
    Tomoda A; Sugimoto K; Suhara M; Takeshita M; Yoneyama Y
    Biochem J; 1978 May; 171(2):329-35. PubMed ID: 207262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional differences between peroxidase compound I and the cytochrome P-450 reactive oxygen intermediate.
    McCarthy MB; White RE
    J Biol Chem; 1983 Aug; 258(15):9153-8. PubMed ID: 6874682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haem compounds as bacterial growth promoters in whey: a possible application to bovine mastitis.
    Mattila T; Maisi P; Sandholm M
    Res Vet Sci; 1984 Jan; 36(1):52-6. PubMed ID: 6324310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the proximal heme cavity of catalase-peroxidase.
    Jakopitsch C; Regelsberger G; Furtmüller PG; Rüker F; Peschek GA; Obinger C
    J Inorg Biochem; 2002 Jul; 91(1):78-86. PubMed ID: 12121764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative decarboxylation of tris-(p-carboxyltetrathiaaryl)methyl radical EPR probes by peroxidases and related hemeproteins: intermediate formation and characterization of the corresponding cations.
    Decroos C; Li Y; Soltani A; Frapart Y; Mansuy D; Boucher JL
    Arch Biochem Biophys; 2010 Oct; 502(1):74-80. PubMed ID: 20615385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.