BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6998476)

  • 21. Plasmid-mediated complementation of a delta-aminolevulinic-acid-requiring Saccharomyces cerevisiae mutant.
    Bard M; Ingolia TD
    Gene; 1984 May; 28(2):195-9. PubMed ID: 6376285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of coproporphyrinogen III oxidase and ferrochelatase genes in heme biosynthesis and regulation in Aspergillus niger.
    Franken AC; Werner ER; Haas H; Lokman BC; van den Hondel CA; Ram AF; de Weert S; Punt PJ
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9773-85. PubMed ID: 24113826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heme inhibits the mitochondrial import of coproporphyrinogen oxidase.
    Susa S; Daimon M; Ono H; Li S; Yoshida T; Kato T
    Blood; 2002 Dec; 100(13):4678-9. PubMed ID: 12453883
    [No Abstract]   [Full Text] [Related]  

  • 24. Isolation, sequence, and regulation by oxygen of the yeast HEM13 gene coding for coproporphyrinogen oxidase.
    Zagorec M; Buhler JM; Treich I; Keng T; Guarente L; Labbe-Bois R
    J Biol Chem; 1988 Jul; 263(20):9718-24. PubMed ID: 2838478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protoheme synthesis system in the cytoplastic "petite" mutant of Saccharomyces cerevisiae.
    Labbe-Bois R; Volland C
    Biochimie; 1977; 59(5-6):539-41. PubMed ID: 329896
    [No Abstract]   [Full Text] [Related]  

  • 26. Characterization of two mutant strains of Saccharomyces cerevisiae deficient in coproporphyrinogen III oxidase activity.
    Bilinski T; Litwinska J; Lukaskiewicz J; Rytka J; Simon M; Labbe-Bois R
    J Gen Microbiol; 1981 Jan; 122(1):79-87. PubMed ID: 7033447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the role of the Aspergillus niger aminolevulinic acid synthase (hemA) gene illustrates the difference between regulation of yeast and fungal haem- and sirohaem-dependent pathways.
    Franken AC; Lokman BC; Ram AF; van den Hondel CA; de Weert S; Punt PJ
    FEMS Microbiol Lett; 2012 Oct; 335(2):104-12. PubMed ID: 22889260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of two 5-aminolevulinic acid biosynthetic pathways in heme and secondary metabolite biosynthesis in Amycolatopsis orientalis.
    Zhu L; Qian X; Chen D; Ge M
    J Basic Microbiol; 2018 Feb; 58(2):198-205. PubMed ID: 29164655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Down-regulation of aminolevulinate synthase, the rate-limiting enzyme for heme biosynthesis in Alzheimer's disease.
    Dwyer BE; Smith MA; Richardson SL; Perry G; Zhu X
    Neurosci Lett; 2009 Aug; 460(2):180-4. PubMed ID: 19477221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of genes involved in heme biosynthesis in the human retinoblastoma cell lines WERI-Rb-1 and Y79: implications for photodynamic therapy.
    Ruiz-Galindo E; Arenas-Huertero F; Ramón-Gallegos E
    J Exp Clin Cancer Res; 2007 Jun; 26(2):195-200. PubMed ID: 17725098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in the activities of the protoheme-synthesizing system during the growth of yeast under different conditions.
    Labbe-Bois R; Volland C
    Arch Biochem Biophys; 1977 Mar; 179(2):565-77. PubMed ID: 192152
    [No Abstract]   [Full Text] [Related]  

  • 32. Effects of 3'-azido-3'-deoxythymidine on erythroid inducible gene expression in human K-562 leukemia cells.
    Fowler DA; Weidner DA; Sommadossi JP
    Toxicol Lett; 1995 Oct; 80(1-3):139-46. PubMed ID: 7482581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic and biochemical characterization of mutants of Saccharomyces cerevisiae blocked in six different steps of heme biosynthesis.
    Urban-Grimal D; Labbe-Bois R
    Mol Gen Genet; 1981; 183(1):85-92. PubMed ID: 7035824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of rate-limiting steps in yeast heme biosynthesis.
    Hoffman M; Góra M; Rytka J
    Biochem Biophys Res Commun; 2003 Oct; 310(4):1247-53. PubMed ID: 14559249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of a new mutant of Saccharomyces cerevisiae with altered synthesis of 5-aminolevulinic acid.
    Carvajal E; Panek AD; Mattoon JR
    J Bacteriol; 1990 Jun; 172(6):2855-61. PubMed ID: 2188943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The nine amino-terminal residues of delta-aminolevulinate synthase direct beta-galactosidase into the mitochondrial matrix.
    Keng T; Alani E; Guarente L
    Mol Cell Biol; 1986 Feb; 6(2):355-64. PubMed ID: 3023841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New developments in the regulation of heme metabolism and their implications.
    Maines MD
    Crit Rev Toxicol; 1984; 12(3):241-314. PubMed ID: 6378529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Porphyrin biosynthesis intermediates are not regulating delta-aminolevulinic acid transport in Saccharomyces cerevisiae.
    Moretti MB; Garcia SC; Batlle A
    Biochem Biophys Res Commun; 2000 Jun; 272(3):946-50. PubMed ID: 10860855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of thiamine-induced respiratory deficiency in Saccharomyces carlsbergensis.
    Nakamura I; Isobe N; Nakamura N; Kamihara T; Fukui S
    J Bacteriol; 1981 Sep; 147(3):954-61. PubMed ID: 7275938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Porphyrin biosynthesis in normal and haem mutants of Saccharomyces cerevisiae. Studies on the inheritance of the HEM R+ phenotype.
    De Siervi A; Rossetti MV; Lezama D; Batlle AM
    Comp Biochem Physiol B Biochem Mol Biol; 1996 Oct; 115(2):167-73. PubMed ID: 8938997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.