These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 6998476)
21. Plasmid-mediated complementation of a delta-aminolevulinic-acid-requiring Saccharomyces cerevisiae mutant. Bard M; Ingolia TD Gene; 1984 May; 28(2):195-9. PubMed ID: 6376285 [TBL] [Abstract][Full Text] [Related]
22. The role of coproporphyrinogen III oxidase and ferrochelatase genes in heme biosynthesis and regulation in Aspergillus niger. Franken AC; Werner ER; Haas H; Lokman BC; van den Hondel CA; Ram AF; de Weert S; Punt PJ Appl Microbiol Biotechnol; 2013 Nov; 97(22):9773-85. PubMed ID: 24113826 [TBL] [Abstract][Full Text] [Related]
23. Heme inhibits the mitochondrial import of coproporphyrinogen oxidase. Susa S; Daimon M; Ono H; Li S; Yoshida T; Kato T Blood; 2002 Dec; 100(13):4678-9. PubMed ID: 12453883 [No Abstract] [Full Text] [Related]
24. Isolation, sequence, and regulation by oxygen of the yeast HEM13 gene coding for coproporphyrinogen oxidase. Zagorec M; Buhler JM; Treich I; Keng T; Guarente L; Labbe-Bois R J Biol Chem; 1988 Jul; 263(20):9718-24. PubMed ID: 2838478 [TBL] [Abstract][Full Text] [Related]
25. Protoheme synthesis system in the cytoplastic "petite" mutant of Saccharomyces cerevisiae. Labbe-Bois R; Volland C Biochimie; 1977; 59(5-6):539-41. PubMed ID: 329896 [No Abstract] [Full Text] [Related]
26. Characterization of two mutant strains of Saccharomyces cerevisiae deficient in coproporphyrinogen III oxidase activity. Bilinski T; Litwinska J; Lukaskiewicz J; Rytka J; Simon M; Labbe-Bois R J Gen Microbiol; 1981 Jan; 122(1):79-87. PubMed ID: 7033447 [TBL] [Abstract][Full Text] [Related]
27. Analysis of the role of the Aspergillus niger aminolevulinic acid synthase (hemA) gene illustrates the difference between regulation of yeast and fungal haem- and sirohaem-dependent pathways. Franken AC; Lokman BC; Ram AF; van den Hondel CA; de Weert S; Punt PJ FEMS Microbiol Lett; 2012 Oct; 335(2):104-12. PubMed ID: 22889260 [TBL] [Abstract][Full Text] [Related]
28. Role of two 5-aminolevulinic acid biosynthetic pathways in heme and secondary metabolite biosynthesis in Amycolatopsis orientalis. Zhu L; Qian X; Chen D; Ge M J Basic Microbiol; 2018 Feb; 58(2):198-205. PubMed ID: 29164655 [TBL] [Abstract][Full Text] [Related]
29. Down-regulation of aminolevulinate synthase, the rate-limiting enzyme for heme biosynthesis in Alzheimer's disease. Dwyer BE; Smith MA; Richardson SL; Perry G; Zhu X Neurosci Lett; 2009 Aug; 460(2):180-4. PubMed ID: 19477221 [TBL] [Abstract][Full Text] [Related]
30. Expression of genes involved in heme biosynthesis in the human retinoblastoma cell lines WERI-Rb-1 and Y79: implications for photodynamic therapy. Ruiz-Galindo E; Arenas-Huertero F; Ramón-Gallegos E J Exp Clin Cancer Res; 2007 Jun; 26(2):195-200. PubMed ID: 17725098 [TBL] [Abstract][Full Text] [Related]
31. Changes in the activities of the protoheme-synthesizing system during the growth of yeast under different conditions. Labbe-Bois R; Volland C Arch Biochem Biophys; 1977 Mar; 179(2):565-77. PubMed ID: 192152 [No Abstract] [Full Text] [Related]
32. Effects of 3'-azido-3'-deoxythymidine on erythroid inducible gene expression in human K-562 leukemia cells. Fowler DA; Weidner DA; Sommadossi JP Toxicol Lett; 1995 Oct; 80(1-3):139-46. PubMed ID: 7482581 [TBL] [Abstract][Full Text] [Related]
33. Genetic and biochemical characterization of mutants of Saccharomyces cerevisiae blocked in six different steps of heme biosynthesis. Urban-Grimal D; Labbe-Bois R Mol Gen Genet; 1981; 183(1):85-92. PubMed ID: 7035824 [TBL] [Abstract][Full Text] [Related]
34. Identification of rate-limiting steps in yeast heme biosynthesis. Hoffman M; Góra M; Rytka J Biochem Biophys Res Commun; 2003 Oct; 310(4):1247-53. PubMed ID: 14559249 [TBL] [Abstract][Full Text] [Related]
35. Isolation and characterization of a new mutant of Saccharomyces cerevisiae with altered synthesis of 5-aminolevulinic acid. Carvajal E; Panek AD; Mattoon JR J Bacteriol; 1990 Jun; 172(6):2855-61. PubMed ID: 2188943 [TBL] [Abstract][Full Text] [Related]
36. The nine amino-terminal residues of delta-aminolevulinate synthase direct beta-galactosidase into the mitochondrial matrix. Keng T; Alani E; Guarente L Mol Cell Biol; 1986 Feb; 6(2):355-64. PubMed ID: 3023841 [TBL] [Abstract][Full Text] [Related]
37. New developments in the regulation of heme metabolism and their implications. Maines MD Crit Rev Toxicol; 1984; 12(3):241-314. PubMed ID: 6378529 [TBL] [Abstract][Full Text] [Related]
38. Porphyrin biosynthesis intermediates are not regulating delta-aminolevulinic acid transport in Saccharomyces cerevisiae. Moretti MB; Garcia SC; Batlle A Biochem Biophys Res Commun; 2000 Jun; 272(3):946-50. PubMed ID: 10860855 [TBL] [Abstract][Full Text] [Related]
40. Porphyrin biosynthesis in normal and haem mutants of Saccharomyces cerevisiae. Studies on the inheritance of the HEM R+ phenotype. De Siervi A; Rossetti MV; Lezama D; Batlle AM Comp Biochem Physiol B Biochem Mol Biol; 1996 Oct; 115(2):167-73. PubMed ID: 8938997 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]