These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 6998712)

  • 21. The irreversibility of thiamin transport in Saccharomyces cerevisiae.
    Ruml T; Silhánková L; Rauch P
    Folia Microbiol (Praha); 1988; 33(5):372-6. PubMed ID: 3060416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Different effects of sodium and potassium ions on the speed of reduction of methylene blue by baker's yeast in absence or presence of glucose].
    CHAIX P; RONCOLI G
    Biochim Biophys Acta; 1952; 9(2):223-4. PubMed ID: 12977808
    [No Abstract]   [Full Text] [Related]  

  • 23. Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes.
    Wolak N; Kowalska E; Kozik A; Rapala-Kozik M
    FEMS Yeast Res; 2014 Dec; 14(8):1249-62. PubMed ID: 25331172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On a disturbance of the normal Pasteur reaction in baker's yeast.
    Hoogerheide JC
    Antonie Van Leeuwenhoek; 1971; 37(4):435-48. PubMed ID: 4945307
    [No Abstract]   [Full Text] [Related]  

  • 25. Sodium azide affects methylene blue concentration in Salmonella typhimurium and Saccharomyces cerevisiae.
    Koch WH; Bass GE
    Photochem Photobiol; 1984 Jun; 39(6):841-5. PubMed ID: 6379696
    [No Abstract]   [Full Text] [Related]  

  • 26. [Baker's yeast as a supplementary source of thiamine in bread].
    PARTESHKO VG
    Gig Sanit; 1960 Jan; 25():99-100. PubMed ID: 14430646
    [No Abstract]   [Full Text] [Related]  

  • 27. Maltotriose transport and utilization in baker's and brewer's yeast.
    Michaljanicová D; Hodan J; Kotyk A
    Folia Microbiol (Praha); 1982; 27(4):217-21. PubMed ID: 6754547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(amic acid)-modified biomass of baker's yeast for enhancement adsorption of methylene blue and basic magenta.
    Yu JX; Li BH; Sun XM; Yuan J; Chi RA
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1394-406. PubMed ID: 19277479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.
    Tsolmonbaatar A; Hashida K; Sugimoto Y; Watanabe D; Furukawa S; Takagi H
    Int J Food Microbiol; 2016 Dec; 238():233-240. PubMed ID: 27672730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the effects of some thiamine analogues upon thiamine transport across the blood-brain barrier of the rat.
    Greenwood J; Pratt OE
    J Physiol; 1985 Dec; 369():79-91. PubMed ID: 4093890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Possible functional roles of carboxyl and histidine residues in a soluble thiamine-binding protein of Saccharomyces cerevisiae.
    Nishimura H; Sempuku K; Iwashima A
    Biochim Biophys Acta; 1981 May; 668(3):333-8. PubMed ID: 7016195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leavening ability of baker's yeast exposed to hyperosmotic media.
    Hirasawa R; Yokoigawa K
    FEMS Microbiol Lett; 2001 Jan; 194(2):159-62. PubMed ID: 11164301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The inhibitory effect of choline and other quaternary ammonium compounds on thiamine transport in isolated rat hepatocytes.
    Yoshioka K; Nishimura H; Himukai M; Iwashima A
    Biochim Biophys Acta; 1985 May; 815(3):499-504. PubMed ID: 3995038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport of ethanol in baker's yeast.
    Kotyk A; Alonso A
    Folia Microbiol (Praha); 1985; 30(1):90-1. PubMed ID: 3884473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of thiols by biotransformation of cysteine-aldehyde conjugates with baker's yeast.
    Huynh-Ba T; Matthey-Doret W; Fay LB; Bel Rhlid R
    J Agric Food Chem; 2003 Jun; 51(12):3629-35. PubMed ID: 12769537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast.
    Lin X; Zhang CY; Bai XW; Feng B; Xiao DG
    Int J Food Microbiol; 2015 Mar; 197():15-21. PubMed ID: 25555226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of an organic solvent-tolerant strain from baker's yeast.
    Kawamoto T; Kanda T; Tanaka A
    Appl Microbiol Biotechnol; 2001 May; 55(4):476-9. PubMed ID: 11398930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Dehydration effect on the fatty acid composition of lipids in baker's yeast Saccharomyces cerevisiae 14].
    Auzinia LP; Zikmanis PB; Auzan SN; Beker ME
    Prikl Biokhim Mikrobiol; 1979; 15(6):822-6. PubMed ID: 395534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Baker's Yeast Sensitizes Metastatic Breast Cancer Cells to Paclitaxel In Vitro.
    Badr El-Din NK; Mahmoud AZ; Hassan TA; Ghoneum M
    Integr Cancer Ther; 2018 Jun; 17(2):542-550. PubMed ID: 29161917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of SNF1 on Maltose Metabolism and Leavening Ability of Baker's Yeast in Lean Dough.
    Zhang CY; Bai XW; Lin X; Liu XE; Xiao DG
    J Food Sci; 2015 Dec; 80(12):M2879-85. PubMed ID: 26580148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.