These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 6998712)
41. Development of intra-strain self-cloning procedure for breeding baker's yeast strains. Nakagawa Y; Ogihara H; Mochizuki C; Yamamura H; Iimura Y; Hayakawa M J Biosci Bioeng; 2017 Mar; 123(3):319-326. PubMed ID: 27829542 [TBL] [Abstract][Full Text] [Related]
42. Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis. Shima J; Kuwazaki S; Tanaka F; Watanabe H; Yamamoto H; Nakajima R; Tokashiki T; Tamura H Int J Food Microbiol; 2005 Jun; 102(1):63-71. PubMed ID: 15925003 [TBL] [Abstract][Full Text] [Related]
43. New insights on the baker's yeast-mediated hydration of oleic acid: the bacterial contaminants of yeast are responsible for the stereoselective formation of (R)-10-hydroxystearic acid. Serra S; De Simeis D J Appl Microbiol; 2018 Mar; 124(3):719-729. PubMed ID: 29280549 [TBL] [Abstract][Full Text] [Related]
44. Some properties of the thiamine uptake system in isolated rat hepatocytes. Yoshioka K Biochim Biophys Acta; 1984 Nov; 778(1):201-9. PubMed ID: 6093881 [TBL] [Abstract][Full Text] [Related]
45. Effects of MAL61 and MAL62 overexpression on maltose fermentation of baker's yeast in lean dough. Zhang CY; Lin X; Song HY; Xiao DG World J Microbiol Biotechnol; 2015 Aug; 31(8):1241-9. PubMed ID: 26003653 [TBL] [Abstract][Full Text] [Related]
46. [Thiamine transport into rat erythrocytes]. Averin VA; Voskoboev AI Vopr Med Khim; 1982; 28(5):108-11. PubMed ID: 7179826 [TBL] [Abstract][Full Text] [Related]
47. Determination of the binding constant of thiamine diphosphate in transketolase from Baker's yeast by circular dichroism titration. Heinrich CP; Schmidt D Experientia; 1973 Oct; 29(10):1226-7. PubMed ID: 4586175 [No Abstract] [Full Text] [Related]
48. PROPERTIES OF THE SUGAR CARRIER IN BAKER'S YEAST. I. KINETICS OF TRANSPORT. KOTYK A Folia Microbiol (Praha); 1965 Jan; 10():30-5. PubMed ID: 14252721 [No Abstract] [Full Text] [Related]
49. Evaluation of baker's yeast strains exhibiting significant growth on Japanese beet molasses and compound analysis of the molasses types. Nakata H; Tamura M; Shintani T; Gomi K J Biosci Bioeng; 2014 Jun; 117(6):715-9. PubMed ID: 24333188 [TBL] [Abstract][Full Text] [Related]
50. Polymer modified biomass of baker's yeast for enhancement adsorption of methylene blue, rhodamine B and basic magenta. Yu JX; Li BH; Sun XM; Yuan J; Chi RA J Hazard Mater; 2009 Sep; 168(2-3):1147-54. PubMed ID: 19329253 [TBL] [Abstract][Full Text] [Related]
51. Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains. Lin X; Yu AQ; Zhang CY; Pi L; Bai XW; Xiao DG Microb Cell Fact; 2017 Nov; 16(1):194. PubMed ID: 29121937 [TBL] [Abstract][Full Text] [Related]
52. [VITAMIN CONTENT IN MILK OF COWS AND GOATS FED DRIED BAKER'S YEAST]. OSMAKOVA MM; KOLISNICHENKO LM; KORNIIAKA HIa; SEREDA LA Ukr Biokhim Zh; 1964; 36():108-12. PubMed ID: 14173727 [No Abstract] [Full Text] [Related]
53. Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker's yeast biomass. Zhang Y; Liu W; Xu M; Zheng F; Zhao M J Hazard Mater; 2010 Jun; 178(1-3):1085-93. PubMed ID: 20226588 [TBL] [Abstract][Full Text] [Related]
54. Effect of cyclodextrin on improvement of enantioselectivity in the reduction of ketopantolactone with baker's yeast. Nakamura K; Kondo S; Ohno A Bioorg Med Chem; 1994 Jun; 2(6):433-7. PubMed ID: 8000865 [TBL] [Abstract][Full Text] [Related]
55. Biosorption of Astrazone Blue basic dye from an aqueous solution using dried biomass of Baker's yeast. Farah JY; El-Gendy NSh; Farahat LA J Hazard Mater; 2007 Sep; 148(1-2):402-8. PubMed ID: 17400371 [TBL] [Abstract][Full Text] [Related]
56. Substrate inhibition kinetics of Saccharomyces cerevisiae in fed-batch cultures operated at constant glucose and maltose concentration levels. Papagianni M; Boonpooh Y; Mattey M; Kristiansen B J Ind Microbiol Biotechnol; 2007 Apr; 34(4):301-9. PubMed ID: 17211636 [TBL] [Abstract][Full Text] [Related]
57. Thiamin transporters in yeast. Iwashima A; Nosaka K; Nishimura H; Enjo F Methods Enzymol; 1997; 279():109-17. PubMed ID: 9211263 [No Abstract] [Full Text] [Related]
58. A live-cell high-throughput screening assay for identification of fatty acid uptake inhibitors. Li H; Black PN; DiRusso CC Anal Biochem; 2005 Jan; 336(1):11-9. PubMed ID: 15582553 [TBL] [Abstract][Full Text] [Related]
59. Mapping of gene controlling thiamine transport in Saccharomyces cerevisiae. Ruml T; Silhánková L Yeast; 1996 Sep; 12(12):1279-83. PubMed ID: 8905932 [TBL] [Abstract][Full Text] [Related]
60. Loss of fermentative capacity in baker's yeast can partly be explained by reduced glucose uptake capacity. Rossell S; van der Weijden CC; Kruckeberg A; Bakker BM; Westerhoff HV Mol Biol Rep; 2002; 29(1-2):255-7. PubMed ID: 12241067 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]