These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 6998731)
21. Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts. Lee CP; RajBhandary UL Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11378-82. PubMed ID: 1763051 [TBL] [Abstract][Full Text] [Related]
22. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases. Jakubowski H; Fersht AR Nucleic Acids Res; 1981 Jul; 9(13):3105-17. PubMed ID: 7024910 [TBL] [Abstract][Full Text] [Related]
23. Hydrolytic editing by a class II aminoacyl-tRNA synthetase. Beuning PJ; Musier-Forsyth K Proc Natl Acad Sci U S A; 2000 Aug; 97(16):8916-20. PubMed ID: 10922054 [TBL] [Abstract][Full Text] [Related]
24. A family of RNA-binding enzymes. the aminoacyl-tRNA synthetases. Mechulam Y; Meinnel T; Blanquet S Subcell Biochem; 1995; 24():323-76. PubMed ID: 7900181 [No Abstract] [Full Text] [Related]
25. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Schimmel PR; Söll D Annu Rev Biochem; 1979; 48():601-48. PubMed ID: 382994 [No Abstract] [Full Text] [Related]
26. Recent results on how aminoacyl transfer RNA synthetases recognize specific transfer RNAs. Schimmel PR Mol Cell Biochem; 1979 May; 25(1):3-14. PubMed ID: 381892 [TBL] [Abstract][Full Text] [Related]
27. Unilateral aminoacylation specificity between bovine mitochondria and eubacteria. Kumazawa Y; Himeno H; Miura K; Watanabe K J Biochem; 1991 Mar; 109(3):421-7. PubMed ID: 1880129 [TBL] [Abstract][Full Text] [Related]
28. Mechanism of tRNA-aminoacyl-tRNA synthetase recognition: influence of aminoalkyladenylates. Krauss G; Coutts SM; Riesner D; Maass G Biochemistry; 1978 Jun; 17(12):2443-9. PubMed ID: 678524 [No Abstract] [Full Text] [Related]
29. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems. Fender A; Sissler M; Florentz C; Giegé R Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797 [TBL] [Abstract][Full Text] [Related]
30. Synthetic and editing reactions of aminoacyl-tRNA synthetases using cognate and non-cognate amino acid substrates. Cvetesic N; Gruic-Sovulj I Methods; 2017 Jan; 113():13-26. PubMed ID: 27713080 [TBL] [Abstract][Full Text] [Related]
36. Transfer RNA: from minihelix to genetic code. Schimmel P; Ribas de Pouplana L Cell; 1995 Jun; 81(7):983-6. PubMed ID: 7600584 [No Abstract] [Full Text] [Related]
37. Some questions about the structure and activity of aminoacyl-tRNA synthetases. Mehler AH; Chakraburtty K Adv Enzymol Relat Areas Mol Biol; 1971; 35():443-501. PubMed ID: 4950472 [No Abstract] [Full Text] [Related]
38. Equilibrium screening-dialysis investigation of the nucleotide sequences in the tRNAPhe recognized by phenylalanyl-tRNA synthetase (Escherichia coli). Vlassov VV; Khodyreva SN FEBS Lett; 1978 Dec; 96(1):95-8. PubMed ID: 365576 [No Abstract] [Full Text] [Related]
39. Rules that govern tRNA identity in protein synthesis. McClain WH J Mol Biol; 1993 Nov; 234(2):257-80. PubMed ID: 8230212 [TBL] [Abstract][Full Text] [Related]
40. Probing the principles of amino acid selection using the alanyl-tRNA synthetase from Escherichia coli. Tsui WC; Fersht AR Nucleic Acids Res; 1981 Sep; 9(18):4627-37. PubMed ID: 6117825 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]