These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6998840)

  • 1. Extrusion of metabolites from baker's yeast during glucose-induced acidification.
    Sigler K; Knotková A; Páca J; Wurst M
    Folia Microbiol (Praha); 1980; 25(4):311-7. PubMed ID: 6998840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas chromatographic determination of extracellular metabolites produced by baker's yeast during glucose-induced acidification.
    Wurst M; Sigler K; Knotková A
    Folia Microbiol (Praha); 1980; 25(4):306-10. PubMed ID: 6998839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of reductive production of succinate under anaerobic conditions in baker's yeast.
    Muratsubaki H
    J Biochem; 1987 Oct; 102(4):705-14. PubMed ID: 3325498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures.
    Geertman JM; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2006 Dec; 6(8):1193-203. PubMed ID: 17156016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.
    Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4403-4416. PubMed ID: 28280870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction.
    Bekers KM; Heijnen JJ; van Gulik WM
    Yeast; 2015 Aug; 32(8):541-57. PubMed ID: 26059529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of pH, malic acid and glucose concentrations on malic acid consumption by Saccharomyces cerevisiae.
    Delcourt F; Taillandier P; Vidal F; Strehaiano P
    Appl Microbiol Biotechnol; 1995; 43(2):321-4. PubMed ID: 7612251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The estimation of alcohol dehydrogenase activity in aerobic and anaerobic "permeabilised" baker's yeast cells.
    Israelstam GF
    Folia Microbiol (Praha); 1979; 24(6):449-54. PubMed ID: 229063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells.
    Beauvoit B; Rigoulet M; Bunoust O; Raffard G; Canioni P; Guérin B
    Eur J Biochem; 1993 May; 214(1):163-72. PubMed ID: 8508788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of aeration on the activity of gluconeogenetic enzymes in Saccharomyces cerevisiae growing under glucose limitation.
    Haarasilta S; Oura E
    Arch Microbiol; 1975 Dec; 106(3):271-3. PubMed ID: 175748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of metabolisms and transports of xylitol using xylose- and xylitol-assimilating Saccharomyces cerevisiae.
    Tani T; Taguchi H; Akamatsu T
    J Biosci Bioeng; 2017 May; 123(5):613-620. PubMed ID: 28126230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leavening ability of baker's yeast exposed to hyperosmotic media.
    Hirasawa R; Yokoigawa K
    FEMS Microbiol Lett; 2001 Jan; 194(2):159-62. PubMed ID: 11164301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A carbon-13 nuclear magnetic resonance analysis of the products of glucose metabolism in Leishmania pifanoi amastigotes and promastigotes.
    Rainey PM; MacKenzie NE
    Mol Biochem Parasitol; 1991 Apr; 45(2):307-15. PubMed ID: 1903845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source.
    Lee PC; Lee WG; Lee SY; Chang HN
    Biotechnol Bioeng; 2001 Jan; 72(1):41-8. PubMed ID: 11084592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L
    Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress.
    Modig T; Granath K; Adler L; Lidén G
    Appl Microbiol Biotechnol; 2007 May; 75(2):289-96. PubMed ID: 17221190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fasciola hepatica: carbohydrate metabolism of the adult.
    Lloyd GM; Barrett J
    Exp Parasitol; 1983 Aug; 56(1):81-8. PubMed ID: 6873227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of N,N'-dicyclohexylcarbodiimide on anaerobic and aerobic phosphate uptake by baker's yeast.
    Huygen PL; Borst-Pauwels GW
    Biochim Biophys Acta; 1972 Nov; 283(2):234-8. PubMed ID: 4574239
    [No Abstract]   [Full Text] [Related]  

  • 20. Metabolic effects of 2-phenylethanol, 1,1-dimethylphenylethanol, periodate and succinic anhydride on intact yeast cells and on fermenting preparations from lyophilized yeast.
    Bohn B; Brossmer R
    FEBS Lett; 1974 May; 42(1):18-9. PubMed ID: 4368908
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.