These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 6998967)

  • 81. [1 of the causes of a change in viability of Escherichia coli L1 in air].
    Koniukhov VF; Mal'tseva LA; Liaĭman ME; Likhoded LIa; Sukhova TG
    Zh Mikrobiol Epidemiol Immunobiol; 1986 Oct; (10):25-7. PubMed ID: 3541463
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Transport of 3,4-dihydroxybutyl-1-phosphonate, an analogue of sn-glycerol 3-phosphate.
    Leifer Z; Engel R; Tropp BE
    J Bacteriol; 1977 May; 130(2):968-71. PubMed ID: 400804
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Metabolism and function of the membrane phospholipids of Escherichia coli.
    Cronan JE; Vagelos PR
    Biochim Biophys Acta; 1972 Feb; 265(1):25-60. PubMed ID: 4552305
    [No Abstract]   [Full Text] [Related]  

  • 84. Pathways for the incorporation of exogenous fatty acids into phosphatidylethanolamine in Escherichia coli.
    Rock CO; Jackowski S
    J Biol Chem; 1985 Oct; 260(23):12720-4. PubMed ID: 3900077
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Membrane phospholipid synthesis in Escherichia coli. Cloning of a structural gene (plsB) of the sn-glycerol-3-phosphate acyl/transferase.
    Lightner VA; Larson TJ; Tailleur P; Kantor GD; Raetz CR; Bell RM; Modrich P
    J Biol Chem; 1980 Oct; 255(19):9413-20. PubMed ID: 6251087
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Metabolic consequences of limited phospholipid synthesis in Escherichia coli.
    Pizer LI; Merlie JP; De Leon MP
    J Biol Chem; 1974 May; 249(10):3212-24. PubMed ID: 4275339
    [No Abstract]   [Full Text] [Related]  

  • 87. Characterization of a periplasmic protein related to sn-glycerol-3-phosphate transport in escherichia coli.
    Argast M; Schumacher G; Boos W
    J Supramol Struct; 1977; 6(1):135-53. PubMed ID: 330954
    [No Abstract]   [Full Text] [Related]  

  • 88. Relation between protein synthesis and phospholipid synthesis and turnover in Escherichia coli.
    Crowfoot PD; Esfahani M; Wakil SJ
    J Bacteriol; 1972 Dec; 112(3):1408-15. PubMed ID: 4565543
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Lipid composition of membranes of Escherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization.
    Oursel D; Loutelier-Bourhis C; Orange N; Chevalier S; Norris V; Lange CM
    Rapid Commun Mass Spectrom; 2007; 21(11):1721-8. PubMed ID: 17477452
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The effect of ATP and Mg2+ on the synthesis of phosphatidylglycerol in Escherichia coli preparations.
    Benns G; Proulx P
    Biochim Biophys Acta; 1974 Mar; 337(3):318-24. PubMed ID: 4598972
    [No Abstract]   [Full Text] [Related]  

  • 91. Palmityl-acyl carrier protein as acyl donor for complex lipid biosynthesis in Escherichia coli.
    Ailhaud GP; Vagelos PR
    J Biol Chem; 1966 Aug; 241(16):3866-9. PubMed ID: 5330968
    [No Abstract]   [Full Text] [Related]  

  • 92. Biosynthesis of phosphatidic acid in mitochondria and microsomes via the acylation of sn-glycero-3-phosphate.
    Davidson JB; Stanacev NZ
    Can J Biochem; 1972 Aug; 50(8):936-48. PubMed ID: 4404137
    [No Abstract]   [Full Text] [Related]  

  • 93. [Acylation of sn-glycerol-3-phosphate by subcellular fractions of rat liver].
    Nachbaur J; Colbeau A; Vignais PM
    C R Acad Hebd Seances Acad Sci D; 1971 Feb; 272(7):1015-8. PubMed ID: 4324244
    [No Abstract]   [Full Text] [Related]  

  • 94. Cell-free synthesis of proteins related to sn-glycerol-3-phosphate transport in Escherichia coli.
    Schumacher G; Bussmann K
    J Bacteriol; 1978 Jul; 135(1):239-50. PubMed ID: 209011
    [TBL] [Abstract][Full Text] [Related]  

  • 95. sn-glycerol-1-phosphate-forming activities in Archaea: separation of archaeal phospholipid biosynthesis and glycerol catabolism by glycerophosphate enantiomers.
    Nishihara M; Yamazaki T; Oshima T; Koga Y
    J Bacteriol; 1999 Feb; 181(4):1330-3. PubMed ID: 9973362
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Mutants of Escherichia coli defective in membrane phospholipid synthesis: mapping of the structural gene for L-glycerol 3-phosphate dehydrogenase.
    Cronan JE; Bell RM
    J Bacteriol; 1974 May; 118(2):598-605. PubMed ID: 4597451
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Properties and biosynthesis of cyclopropane fatty acids in Escherichia coli.
    Cronan JE; Reed R; Taylor FR; Jackson MB
    J Bacteriol; 1979 Apr; 138(1):118-21. PubMed ID: 374358
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A mutant of Escherichia coli defective in phosphatidic acid synthesis.
    Kito M; Lubin M; Pizer LI
    Biochem Biophys Res Commun; 1969 Feb; 34(4):454-8. PubMed ID: 4887460
    [No Abstract]   [Full Text] [Related]  

  • 99. Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate.
    Zhu MM; Lawman PD; Cameron DC
    Biotechnol Prog; 2002; 18(4):694-9. PubMed ID: 12153300
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effects of phosphonic acid analogues of glycerol-3-phosphate on the growth of Escherichia coli: phospholipid metabolism.
    Shopsis CS; Nunn WD; Engel R; Tropp BE
    Antimicrob Agents Chemother; 1973 Oct; 4(4):467-73. PubMed ID: 4598615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.