These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 6999328)

  • 41. Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains.
    Ho CK; Shuman S
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12709-14. PubMed ID: 12228725
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Purification of the T4 DNA ligase by Blue Sepharose chromatography.
    Sugiura M
    Anal Biochem; 1980 Nov; 108(2):227-9. PubMed ID: 7006454
    [No Abstract]   [Full Text] [Related]  

  • 43. Kinetics of the RNA-DNA helicase activity of Escherichia coli transcription termination factor rho. 1. Characterization and analysis of the reaction.
    Walstrom KM; Dozono JM; Robic S; von Hippel PH
    Biochemistry; 1997 Jul; 36(26):7980-92. PubMed ID: 9201945
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mutational analysis of vaccinia DNA ligase defines residues essential for covalent catalysis.
    Shuman S; Ru XM
    Virology; 1995 Aug; 211(1):73-83. PubMed ID: 7645238
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conformational isomers of curved DNA molecules can be observed by polyacrylamide gel electrophoresis.
    Stellwagen NC
    Electrophoresis; 2000 Jul; 21(12):2327-34. PubMed ID: 10939442
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro evolution and characterization of a ligase ribozyme adapted to acidic conditions: effect of further rounds of evolution.
    Miyamoto Y; Teramoto N; Imanishi Y; Ito Y
    Biotechnol Bioeng; 2005 Apr; 90(1):36-45. PubMed ID: 15723313
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simultaneous mutagenesis of multiple sites: application of the ligase chain reaction using PCR products instead of oligonucleotides.
    Rouwendal GJ; Wolbert EJ; Zwiers LH; Springer J
    Biotechniques; 1993 Jul; 15(1):68-70, 72-4, 76. PubMed ID: 8363840
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of monovalent cations on the activity of T4 DNA ligase in the presence of polyethylene glycol.
    Hayashi K; Nakazawa M; Ishizaki Y; Obayashi A
    Nucleic Acids Res; 1985 May; 13(9):3261-71. PubMed ID: 2987879
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transformation of naturally competent Streptococcus mutans with replicative and non-replicative Tn916-containing plasmids: implications for a mechanism of transposition.
    Caufield PW; Shah G
    Dev Biol Stand; 1995; 85():19-25. PubMed ID: 8586174
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transformation of Escherichia coli increases 260-fold upon inactivation of T4 DNA ligase.
    Michelsen BK
    Anal Biochem; 1995 Feb; 225(1):172-4. PubMed ID: 7778774
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stimulation of intermolecular ligation with E. coli DNA ligase by high concentrations of monovalent cations in polyethylene glycol solutions.
    Hayashi K; Nakazawa M; Ishizaki Y; Hiraoka N; Obayashi A
    Nucleic Acids Res; 1985 Nov; 13(22):7979-92. PubMed ID: 3906565
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Isolation of highly purified RNA ligase from bacteriophage T4].
    Zagrebel'nyĭ SN; Zernov IuP; Maĭstrenko VF; Pustoshilova NM
    Prikl Biokhim Mikrobiol; 1984; 20(1):24-30. PubMed ID: 6322156
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium Deinococcus radiodurans.
    Blasius M; Buob R; Shevelev IV; Hubscher U
    BMC Mol Biol; 2007 Aug; 8():69. PubMed ID: 17705817
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Label-free electrochemical monitoring of DNA ligase activity.
    Vacek J; Cahova K; Palecek E; Bullard DR; Lavesa-Curto M; Bowater RP; Fojta M
    Anal Chem; 2008 Oct; 80(19):7609-13. PubMed ID: 18778033
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ligation of single-stranded oligodeoxyribonucleotides by T4 RNA ligase.
    Tessier DC; Brousseau R; Vernet T
    Anal Biochem; 1986 Oct; 158(1):171-8. PubMed ID: 3799962
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of a thermophilic DNA ligase from the archaeon Thermococcus fumicolans.
    Rolland JL; Gueguen Y; Persillon C; Masson JM; Dietrich J
    FEMS Microbiol Lett; 2004 Jul; 236(2):267-73. PubMed ID: 15251207
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermophilic HB8 DNA ligase: effects of polyethylene glycols and polyamines on blunt-end ligation of DNA.
    Takahashi M; Uchida T
    J Biochem; 1986 Jul; 100(1):123-31. PubMed ID: 3759925
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Restoration by T4 ligase of DNA sequences sensitive to "flush" cleaving restriction enzyme.
    Mottes M; Morandi C; Cremaschi S; Sgaramella V
    Nucleic Acids Res; 1977 Jul; 4(7):2467-75. PubMed ID: 198743
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A new 10-min ligation method using a modified buffer system with a very low amount of T4 DNA ligase: the "Coffee Break Ligation" technique.
    Yoshino Y; Ishida M; Horii A
    Biotechnol Lett; 2007 Oct; 29(10):1557-60. PubMed ID: 17581703
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dependence of the ligation efficiency of large DNA fragments isolated from agarose gels on the purification method.
    Fransen E; Van Camp G; Winnepenninckx B
    Prep Biochem Biotechnol; 1998 Aug; 28(3):235-41. PubMed ID: 9710896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.