BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 7001214)

  • 1. Studies on metabolism and toxicity of styrene: III. The effect of metabolic inactivation by rat-liver S9 on the mutagenicity of phenyloxirane toward Salmonella typhimurium.
    Yoshikawa K; Isobe M; Watabe I; Takabatake E
    Mutat Res; 1980 Jul; 78(3):219-26. PubMed ID: 7001214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of hepatic microsomal and cytosolic subcellular fractions on the mutagenic activity of epoxide-containing compounds in the Salmonella assay.
    El-Tantawy MA; Hammock BD
    Mutat Res; 1980 Sep; 79(1):59-71. PubMed ID: 7001221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of epoxides.
    Oesch F
    Adv Exp Med Biol; 1981; 136 Pt A():39-52. PubMed ID: 7046377
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on metabolism and toxicity of styrene--VI. Regioselectivity in glutathione S-conjugation and hydrolysis of racemic, R- and S-phenyloxiranes in rat liver.
    Watabe T; Ozawa N; Hiratsuka A
    Biochem Pharmacol; 1983 Mar; 32(5):777-85. PubMed ID: 6838626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some factors determining the concentration of liver proteins for optimal mutagenicity of chemicals in the Salmonella/microsome assay.
    Malaveille C; Kuroki T; Brun G; Hautefeuille A; Camus AM; Bartsch H
    Mutat Res; 1979 Dec; 63(2):245-58. PubMed ID: 392308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione and glutathione S-transferases in the Salmonella mammalian-microsome mutagenicity test.
    Summer KH; Göggelmann W; Greim H
    Mutat Res; 1980 May; 70(3):269-78. PubMed ID: 6991915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative studies on the metabolism and mutagenicity of vinyl ethers.
    Sone T; Isobe M; Takabatake E
    J Pharmacobiodyn; 1989 Jun; 12(6):345-51. PubMed ID: 2674402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase of 2,3-epoxybutane mutagenicity by glutathione-S-transferases.
    de Meester C
    Toxicol Lett; 1984 Jun; 21(3):255-62. PubMed ID: 6377584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detoxication of aliphatic epoxides by diol formation and glutathione conjugation.
    Sinsheimer JE; Van den Eeckhout E; Hooberman BH; Beylin VG
    Chem Biol Interact; 1987; 63(1):75-90. PubMed ID: 3308149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutagenicity studies on coffee. The influence of different factors on the mutagenic activity in the Salmonella/mammalian microsome assay.
    Friederich U; Hann D; Albertini S; Schlatter C; Würgler FE
    Mutat Res; 1985; 156(1-2):39-52. PubMed ID: 3889626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutagenic and cell-transforming activities of triol-epoxides as compared to other chrysene metabolites.
    Glatt H; Seidel A; Bochnitschek W; Marquardt H; Marquardt H; Hodgson RM; Grover PL; Oesch F
    Cancer Res; 1986 Sep; 46(9):4556-65. PubMed ID: 3524815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the effect of selenium on the mutagenicity and metabolism of benzo[a]pyrene in rat and hamster liver S9 activation systems.
    Teel RW
    Cancer Lett; 1984 Oct; 24(3):281-9. PubMed ID: 6388822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vinylidene chloride: changes in drug-metabolizing enzymes, mutagenicity and relation to its targets for carcinogenesis.
    Oesch F; Protić-Sabljić M; Friedberg T; Klimisch HJ; Glatt HR
    Carcinogenesis; 1983 Aug; 4(8):1031-8. PubMed ID: 6347425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of phenanthrene to mutagenic metabolites and evidence for at least two different activation pathways.
    Oesch F; Bücker M; Glatt HR
    Mutat Res; 1981 Mar; 81(1):1-10. PubMed ID: 7019683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative mutagenicity of structurally related aliphatic epoxides in a modified Salmonella/microsome assay.
    Castelain P; Criado B; Cornet M; Laib R; Rogiers V; Kirsch-Volders M
    Mutagenesis; 1993 Sep; 8(5):387-93. PubMed ID: 8231818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction with microsomal lipid as a major factor responsible for S9-mediated inhibition of 1,8-dinitropyrene mutagenicity.
    Shah AB; Combes RD; Rowland IR
    Mutat Res; 1991 Jul; 249(1):93-104. PubMed ID: 2067546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenicity of (R) and (S) styrene 7,8-oxide and the intermediary mercapturic acid metabolites formed from styrene 7,8-oxide.
    Pagano DA; Yagen B; Hernandez O; Bend JR; Zeiger E
    Environ Mutagen; 1982; 4(5):575-84. PubMed ID: 6754358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of tridiphane (2-(3,5-dichlorophenyl)-2(2,2,2-trichloroethyl)oxirane) by hepatic epoxide hydrolases and glutathione S-transferases in mouse.
    Magdalou J; Hammock BD
    Toxicol Appl Pharmacol; 1987 Dec; 91(3):439-49. PubMed ID: 3424374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of mutagens by hepatocytes and liver 9000 X g supernatant from human origin in the Salmonella typhimurium mutagenicity assay. Comparison with rat liver preparations.
    Neis JM; Yap SH; van Gemert PJ; Roelofs HM; Bos RP; Henderson PT
    Mutat Res; 1986 Feb; 164(1):41-51. PubMed ID: 3512987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenic action of a series of epoxides.
    Wade MJ; Moyer JW; Hine CH
    Mutat Res; 1979 Apr; 66(4):367-71. PubMed ID: 379632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.