These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7001355)

  • 1. Yeast tRNAPhe conformation wheels: a novel probe of the monoclinic and orthorhombic models.
    Srinivasan AR; Olson WK
    Nucleic Acids Res; 1980 May; 8(10):2307-29. PubMed ID: 7001355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution.
    Ladner JE; Jack A; Robertus JD; Brown RS; Rhodes D; Clark BF; Klug A
    Proc Natl Acad Sci U S A; 1975 Nov; 72(11):4414-8. PubMed ID: 1105583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast phenylalanine transfer RNA: atomic coordinates and torsion angles.
    Quigley GJ; Seeman NC; Wang AH; Suddath FL; Rich A
    Nucleic Acids Res; 1975 Dec; 2(12):2329-41. PubMed ID: 802512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray diffraction study of the zinc(II) binding sites in yeast phenylalanine transfer RNA. Preferential binding of zinc to guanines in purine-purine sequences.
    Rubin JR; Wang J; Sundaralingam M
    Biochim Biophys Acta; 1983 Mar; 756(1):111-8. PubMed ID: 6337651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-range conformational transition in yeast tRNAPhe, induced by the Y-base removal and detected by chloroacetaldehyde modification.
    Krzyzosiak WJ; Ciesiołka J
    Nucleic Acids Res; 1983 Oct; 11(19):6913-21. PubMed ID: 6356038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain.
    Kim SH; Quigley GJ; Suddath FL; McPherson A; Sneden D; Kim JJ; Weinzierl J; Rich A
    Science; 1973 Jan; 179(4070):285-8. PubMed ID: 4566654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNA.
    Brown RS; Dewan JC; Klug A
    Biochemistry; 1985 Aug; 24(18):4785-801. PubMed ID: 3907691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polynucleotide folding in yeast tRNAPhe: elucidation of short-, medium-, and long-range interactions of sugar-phosphate-sugar backbone and base using a "blocked" nucleotide probe.
    Malathi R; Yathindra N
    Biopolymers; 1982 Oct; 21(10):2033-47. PubMed ID: 6756496
    [No Abstract]   [Full Text] [Related]  

  • 9. Crystallographic refinement of yeast aspartic acid transfer RNA.
    Westhof E; Dumas P; Moras D
    J Mol Biol; 1985 Jul; 184(1):119-45. PubMed ID: 3897553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel representation of the conformational structure of transfer RNAs. Correlation of the folding patterns of the polynucleotide chain with the base sequence and the nucleotide backbone torsions.
    Srinivasan AR; Yathindra N
    Nucleic Acids Res; 1977 Nov; 4(11):3969-79. PubMed ID: 339206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of chain folding in nucleic acids. The (omega, omega) plot and its correlation to the nucleotide geometry in yeast tRNAPhe1.
    Sundaralingam M; Mizuno H; Stout CD; Rao ST; Liedman M; Yathindra N
    Nucleic Acids Res; 1976 Oct; 3(10):2471-84. PubMed ID: 792815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The three-dimensional structure of yeast phenylalanine transfer RNA: shape of the molecule at 5.5-A resolution.
    Kim SH; Quigley G; Suddath FL; McPherson A; Sneden D; Kim JJ; Weinzierl J; Blattmann P; Rich A
    Proc Natl Acad Sci U S A; 1972 Dec; 69(12):3746-50. PubMed ID: 4566458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of yeast tRNAAsp.
    Moras D; Comarmond MB; Fischer J; Weiss R; Thierry JC; Ebel JP; Giegé R
    Nature; 1980 Dec; 288(5792):669-74. PubMed ID: 7005687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the ribotrinucleoside diphosphate codon UpUpC bound to tRNAPhe from yeast. A time-dependent transferred nuclear Overhauser enhancement study.
    Clore GM; Gronenborn AM; McLaughlin LW
    J Mol Biol; 1984 Mar; 174(1):163-73. PubMed ID: 6371248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electrostatic molecular potential of yeast tRNAPhe. (I). The potential due to the phosphate backbone.
    Lavery R; Pullman A; Pullman B
    Nucleic Acids Res; 1980 Mar; 8(5):1061-79. PubMed ID: 7003554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesium cation induced conformational change of yeast tRNAPhe as studied by singlet-singlet energy transfer.
    Nagamatsu K; Miyazawa Y
    J Biochem; 1983 Dec; 94(6):1967-71. PubMed ID: 6368529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-bonded protons in the tertiary structure of yeast tRNAPhe in solution.
    Römer R; Varadi V
    Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1561-4. PubMed ID: 323858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA.
    Quigley GJ; Teeter MM; Rich A
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):64-8. PubMed ID: 343112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited.
    Shi H; Moore PB
    RNA; 2000 Aug; 6(8):1091-105. PubMed ID: 10943889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic coordinates and molecular conformation of yeast phenylalanyl tRNA. An independent investigation.
    Stout CD; Mizuno H; Rubin J; Brennan T; Rao ST; Sundaralingam M
    Nucleic Acids Res; 1976 Apr; 3(4):1111-23. PubMed ID: 775444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.