These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 7002158)

  • 1. Identification of Arg-143 as the essential arginyl residue in yeast Cu,Zn superoxide dismutase by use of a chromophoric arginine reagent.
    Borders CL; Johansen JT
    Biochem Biophys Res Commun; 1980 Oct; 96(3):1071-8. PubMed ID: 7002158
    [No Abstract]   [Full Text] [Related]  

  • 2. 4-Hydroxy-3-nitrophenylglyoxal. A chromophoric reagent for arginyl residues in proteins.
    Borders CL; Pearson LJ; McLaughlin AE; Gustafson ME; Vasiloff J; An FY; Morgan DJ
    Biochim Biophys Acta; 1979 Jun; 568(2):491-5. PubMed ID: 486497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of phenylglyoxal on Cu,Zn superoxide dismutase from the shark Prionace glauca.
    Galtieri A; Lania A; Polticelli F; Calabrese L
    Ital J Biochem; 1990; 39(3):207A-208A. PubMed ID: 2391237
    [No Abstract]   [Full Text] [Related]  

  • 4. Essentiality of the active-site arginine residue for the normal catalytic activity of Cu,Zn superoxide dismutase.
    Borders CL; Saunders JE; Blech DM; Fridovich I
    Biochem J; 1985 Sep; 230(3):771-6. PubMed ID: 4062877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of the role of arginine-143 in the human copper and zinc superoxide dismutase by site-specific mutagenesis.
    Beyer WF; Fridovich I; Mullenbach GT; Hallewell R
    J Biol Chem; 1987 Aug; 262(23):11182-7. PubMed ID: 3112154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of arginine 143 in the electrostatics and mechanism of Cu,Zn superoxide dismutase: computational and experimental evaluation by mutational analysis.
    Fisher CL; Cabelli DE; Tainer JA; Hallewell RA; Getzoff ED
    Proteins; 1994 May; 19(1):24-34. PubMed ID: 8066083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coenzyme B12-dependent diol dehydrase: chemical modification with 2,3-butanedione and phenylglyoxal.
    Kuno S; Toraya T; Fukui S
    Arch Biochem Biophys; 1980 Nov; 205(1):240-5. PubMed ID: 7004358
    [No Abstract]   [Full Text] [Related]  

  • 8. Arginyl residues and anion binding sites in proteins.
    Riordan JF
    Mol Cell Biochem; 1979 Jul; 26(2):71-92. PubMed ID: 388184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure and function of ribonuclease T1. XI. Modification of the single arginine residue in ribonuclease T1 by phenylglyoxal and glyoxal.
    Takahashi K
    J Biochem; 1970 Nov; 68(5):659-64. PubMed ID: 5484446
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization of recombinant Saccharomyces cerevisiae manganese-containing superoxide dismutase and its H30A and K170R mutants expressed in Escherichia coli.
    Borders CL; Bjerrum MJ; Schirmer MA; Oliver SG
    Biochemistry; 1998 Aug; 37(32):11323-31. PubMed ID: 9698380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Malebrán LP; Cardemil E
    Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of available arginine residues in proteins by p-hydroxyphenylglyoxal.
    Yamasaki RB; Vega A; Feeney RE
    Anal Biochem; 1980 Nov; 109(1):32-40. PubMed ID: 7053120
    [No Abstract]   [Full Text] [Related]  

  • 13. A comparison of the effects of cyanide, hydrogen peroxide, and phenylglyoxal on eucaryotic and procaryotic Cu,Zn superoxide dismutases.
    Borders CL; Fridovich I
    Arch Biochem Biophys; 1985 Sep; 241(2):472-6. PubMed ID: 4037799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical modification of L-phenylalanine oxidase from Pseudomonas sp. P-501 by phenylglyoxal. Identification of one essential arginyl residue.
    Mukouyama EB; Hirose T; Suzuki H
    J Biochem; 1998 Jun; 123(6):1097-103. PubMed ID: 9603998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenol-sulfotransferase inactivation by 2,3-butanedione and phenylglyoxal: evidence for an active site arginyl residue.
    Borchardt RT; Schasteen CS
    Biochem Biophys Res Commun; 1977 Oct; 78(3):1067-73. PubMed ID: 911328
    [No Abstract]   [Full Text] [Related]  

  • 16. An essential arginyl residue in yeast hexokinase.
    Philips M; Pho DB; Pradel LA
    Biochim Biophys Acta; 1979 Feb; 566(2):296-304. PubMed ID: 369611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p-Azidophenylglyoxal. A heterobifunctional photoactivable cross-linking reagent selective for arginyl residues.
    Ngo TT; Yam CF; Lenhoff HM; Ivy J
    J Biol Chem; 1981 Nov; 256(21):11313-8. PubMed ID: 7026566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroperoxide anion, HO-2, is an affinity reagent for the inactivation of yeast Cu,Zn superoxide dismutase: modification of one histidine per subunit.
    Blech DM; Borders CL
    Arch Biochem Biophys; 1983 Jul; 224(2):579-86. PubMed ID: 6347073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of adenylate cyclase by phenylglyoxal and other dicarbonyls. Evidence for existence of essential arginyl residues.
    Franks DJ; Tunnicliff G; Ngo TT
    Biochim Biophys Acta; 1980 Feb; 611(2):358-62. PubMed ID: 7357013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Reactivity and specificity of alpha-dicarbonyl compounds towards essential aminoacyl residues of D-beta-hydroxybutyrate dehydrogenase from the inner mitochondrial membrane].
    Latruffe N; El Kebbaj MS; Schmitt G; Gaudemer Y
    C R Seances Soc Biol Fil; 1980; 174(6):1053-9. PubMed ID: 6451266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.