These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 7003348)

  • 21. Molecular dissection of a transfer RNA and the basis for its identity.
    Hou YM; Francklyn C; Schimmel P
    Trends Biochem Sci; 1989 Jun; 14(6):233-7. PubMed ID: 2669241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation.
    Seno T; Agris PF; Söll D
    Biochim Biophys Acta; 1974 May; 349(3):328-38. PubMed ID: 4366808
    [No Abstract]   [Full Text] [Related]  

  • 23. Rules that govern tRNA identity in protein synthesis.
    McClain WH
    J Mol Biol; 1993 Nov; 234(2):257-80. PubMed ID: 8230212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of tRNAPhe and tRNAVal with aminoacyl-tRNA synthetases. A chemical modification study.
    Vlassov VV; Kern D; Romby P; Giegé R; Ebel JP
    Eur J Biochem; 1983 May; 132(3):537-44. PubMed ID: 6343077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase.
    Jahn M; Rogers MJ; Söll D
    Nature; 1991 Jul; 352(6332):258-60. PubMed ID: 1857423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new mechanism for the hydrolytic editing function of aminoacyl-trna synthetases. Kinetic specificity for the tRNA substrate.
    Wright HT
    FEBS Lett; 1980 Sep; 118(2):165-71. PubMed ID: 6998731
    [No Abstract]   [Full Text] [Related]  

  • 27. Studies on the mechanism of deacylation of aminoacyl-tRNAs by aminoacyl-tRNA synthetases in the absence of adenosine monophosphate and pyrophosphate.
    Bonnet J
    Biochimie; 1974; 56(4):541-5. PubMed ID: 4371101
    [No Abstract]   [Full Text] [Related]  

  • 28. Study of the role of the acceptor stem in the interactions between tRNAs and aminoacyl-tRNA synthetases.
    Bonnet J; Befort N; Bollack C; Fasiolo F; Ebel JP
    Nucleic Acids Res; 1975 Feb; 2(2):211-21. PubMed ID: 1091915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anticodon G recognition by tRNA synthetases mimics the tRNA core.
    Klipcan L; Safro M; Schimmel P
    Trends Biochem Sci; 2013 May; 38(5):229-32. PubMed ID: 23266103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An operational RNA code for amino acids and possible relationship to genetic code.
    Schimmel P; Giegé R; Moras D; Yokoyama S
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):8763-8. PubMed ID: 7692438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic mechanism of phenylalanyl-tRNA synthetase of Escherichia coli K10. Different properties of native and photochemically cross-linked tRNAPhe can be explained in the light of tRNA conformer equilibria.
    Holler E; Baltzinger M; Favre A
    Biochemistry; 1981 Mar; 20(5):1139-47. PubMed ID: 7013785
    [No Abstract]   [Full Text] [Related]  

  • 32. Relationship between the structure and function of Escherichia coli initiator tRNA.
    Dyson MR; Mandal N; RajBhandary UL
    Biochimie; 1993; 75(12):1051-60. PubMed ID: 7515283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition.
    Vasil'eva IA; Moor NA
    Biochemistry (Mosc); 2007 Mar; 72(3):247-63. PubMed ID: 17447878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural organization of complexes of transfer RNAs with aminoacyl transfer RNA synthetases.
    Rich A; Schimmel PR
    Nucleic Acids Res; 1977; 4(5):1649-65. PubMed ID: 331261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Escherichia coli proline tRNA: structure and recognition sites for prolyl-tRNA synthetase.
    Hasegawa T; Yokogawa T
    Nucleic Acids Symp Ser; 2000; (44):7-8. PubMed ID: 12903242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small RNA helices as substrates for aminoacylation and their relationship to charging of transfer RNAs.
    Francklyn C; Musier-Forsyth K; Schimmel P
    Eur J Biochem; 1992 Jun; 206(2):315-21. PubMed ID: 1375910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction between dimeric methionyl-tRNA synthetase and methionine accepting tRNAs from E. coli.-- Studies by partial ribonuclease digestion.
    Petersen HU; Siboska GE; Clark BF; Buckingham RH; Hountondji C; Blanquet S
    Biochimie; 1984; 66(9-10):625-30. PubMed ID: 6395901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. tRNA identity.
    Normanly J; Abelson J
    Annu Rev Biochem; 1989; 58():1029-49. PubMed ID: 2673006
    [No Abstract]   [Full Text] [Related]  

  • 39. Recent results on how aminoacyl transfer RNA synthetases recognize specific transfer RNAs.
    Schimmel PR
    Mol Cell Biochem; 1979 May; 25(1):3-14. PubMed ID: 381892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The in vivo stability, maturation and aminoacylation of anticodon-substituted Escherichia coli initiator methionine tRNAs.
    Grosjean H; De Henau S; Doi T; Yamane A; Ohtsuka E; Ikehara M; Beauchemin N; Nicoghosian K; Cedergren R
    Eur J Biochem; 1987 Jul; 166(2):325-32. PubMed ID: 3301339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.