These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 7004163)
1. Utilization of the chick chorioallantoic membrane for in vitro growth of the embryonic murine kidney. Preminger GM; Koch WE; Fried FA; Mandell J Am J Anat; 1980 Sep; 159(1):17-24. PubMed ID: 7004163 [TBL] [Abstract][Full Text] [Related]
2. Chorioallantoic membrane grafting of the embryonic murine kidney. An improved in vitro technique for studying kidney morphogenesis. Preminger GM; Koch WF; Fried FA; Mandell J Invest Urol; 1981 Mar; 18(5):377-81. PubMed ID: 7203961 [TBL] [Abstract][Full Text] [Related]
3. Ex vivo whole embryonic kidney culture: a novel method for research in development, regeneration and transplantation. Giuliani S; Perin L; Sedrakyan S; Kokorowski P; Jin D; De Filippo R J Urol; 2008 Jan; 179(1):365-70. PubMed ID: 18006007 [TBL] [Abstract][Full Text] [Related]
4. Differentiation of the mouse embryoid bodies grafted on the chorioallantoic membrane of the chick embryo. Gajović S; Gruss P Int J Dev Biol; 1998 Mar; 42(2):225-8. PubMed ID: 9551869 [TBL] [Abstract][Full Text] [Related]
5. Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane. Sariola H; Ekblom P; Lehtonen E; Saxén L Dev Biol; 1983 Apr; 96(2):427-35. PubMed ID: 6339300 [TBL] [Abstract][Full Text] [Related]
6. Immunohistochemical localization of the epidermal growth factor, transforming growth factor alpha, and their receptor in the human mesonephros and metanephros. Bernardini N; Bianchi F; Lupetti M; Dolfi A Dev Dyn; 1996 Jul; 206(3):231-8. PubMed ID: 8896979 [TBL] [Abstract][Full Text] [Related]
7. Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis. Kitamoto Y; Tokunaga H; Tomita K J Clin Invest; 1997 May; 99(10):2351-7. PubMed ID: 9153276 [TBL] [Abstract][Full Text] [Related]
8. Involvement of laminin binding integrins and laminin-5 in branching morphogenesis of the ureteric bud during kidney development. Zent R; Bush KT; Pohl ML; Quaranta V; Koshikawa N; Wang Z; Kreidberg JA; Sakurai H; Stuart RO; Nigám SK Dev Biol; 2001 Oct; 238(2):289-302. PubMed ID: 11784011 [TBL] [Abstract][Full Text] [Related]
10. Development and differentiation of the ureteric bud into the ureter in the absence of a kidney collecting system. Bush KT; Vaughn DA; Li X; Rosenfeld MG; Rose DW; Mendoza SA; Nigam SK Dev Biol; 2006 Oct; 298(2):571-84. PubMed ID: 16934795 [TBL] [Abstract][Full Text] [Related]
11. Role of N-myc in the developing mouse kidney. Bates CM; Kharzai S; Erwin T; Rossant J; Parada LF Dev Biol; 2000 Jun; 222(2):317-25. PubMed ID: 10837121 [TBL] [Abstract][Full Text] [Related]
12. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney. Meyer TN; Schwesinger C; Bush KT; Stuart RO; Rose DW; Shah MM; Vaughn DA; Steer DL; Nigam SK Dev Biol; 2004 Nov; 275(1):44-67. PubMed ID: 15464572 [TBL] [Abstract][Full Text] [Related]
13. Involvement of hepatocyte growth factor in branching morphogenesis of murine salivary gland. Ikari T; Hiraki A; Seki K; Sugiura T; Matsumoto K; Shirasuna K Dev Dyn; 2003 Oct; 228(2):173-84. PubMed ID: 14517989 [TBL] [Abstract][Full Text] [Related]
14. Induction of ureter branching as a response to Wnt-2b signaling during early kidney organogenesis. Lin Y; Liu A; Zhang S; Ruusunen T; Kreidberg JA; Peltoketo H; Drummond I; Vainio S Dev Dyn; 2001 Sep; 222(1):26-39. PubMed ID: 11507767 [TBL] [Abstract][Full Text] [Related]
15. Growth of human tumor xenografts on chorioallantoic membrane of chick embryo. Okamura K; Tsuji Y; Shimoji T; Miyake K Hinyokika Kiyo; 1995 Mar; 41(3):163-70. PubMed ID: 7741067 [TBL] [Abstract][Full Text] [Related]
16. Patterning parameters associated with the branching of the ureteric bud regulated by epithelial-mesenchymal interactions. Lin Y; Zhang S; Tuukkanen J; Peltoketo H; Pihlajaniemi T; Vainio S Int J Dev Biol; 2003 Feb; 47(1):3-13. PubMed ID: 12653247 [TBL] [Abstract][Full Text] [Related]
17. Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa. Gao X; Chen X; Taglienti M; Rumballe B; Little MH; Kreidberg JA Development; 2005 Dec; 132(24):5437-49. PubMed ID: 16291795 [TBL] [Abstract][Full Text] [Related]
18. Vegf as an epithelial cell morphogen modulates branching morphogenesis of embryonic kidney by directly acting on the ureteric bud. Marlier A; Schmidt-Ott KM; Gallagher AR; Barasch J; Karihaloo A Mech Dev; 2009; 126(3-4):91-8. PubMed ID: 19150651 [TBL] [Abstract][Full Text] [Related]
19. Dual origin of glomerular basement membrane. Sariola H; Timpl R; von der Mark K; Mayne R; Fitch JM; Linsenmayer TF; Ekblom P Dev Biol; 1984 Jan; 101(1):86-96. PubMed ID: 6420214 [TBL] [Abstract][Full Text] [Related]
20. Tuft-to-capsule adhesions and their precursors: differences between the vascular and tubular poles of the human glomerulus. Gibson IW; Downie TT; More IA; Lindop GB J Pathol; 1998 Apr; 184(4):430-5. PubMed ID: 9664911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]