BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7004486)

  • 1. Catalytic mechanism of isoleucyl-tRNA synthetase of Escherichia coli K10. Effect of pH and chemical modification.
    Holler E; Schwarze G; Scheibl R; Hammer-Raber B
    Biochemistry; 1980 Nov; 19(23):5403-11. PubMed ID: 7004486
    [No Abstract]   [Full Text] [Related]  

  • 2. ATP-induced activation of the aminoacylation of tRNA by the isoleucyl-tRNA synthetase from Escherichia coli.
    Airas RK
    Eur J Biochem; 1988 Sep; 176(2):359-63. PubMed ID: 3046945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific modification of isoleucyl transfer ribonucleic acid synthetase by pyridoxal 5'-phosphate.
    Piszkiewicz D; Duval J; Rostas S
    Biochemistry; 1977 Aug; 16(16):3538-43. PubMed ID: 19052
    [No Abstract]   [Full Text] [Related]  

  • 4. Isoleucyl-tRNA synthetase inactivation and the extent of aminoacylation of tRNAIle from Escherichia coli.
    Marashi F; Harris CL
    Biochim Biophys Acta; 1977 Jul; 477(1):84-8. PubMed ID: 328047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct determination of the enthalpy of binding of tRNAIle to isoleucyl-tRNA synthetase of E. coli MRE 600.
    Wiesinger H; Kula MR; Hinz HJ
    Hoppe Seylers Z Physiol Chem; 1980; 361(2):201-5. PubMed ID: 6987144
    [No Abstract]   [Full Text] [Related]  

  • 6. The mechanism of aminoacylation of transfer ribonucleic acid. Reactivity of enzyme-bound isoleucyl adenylate.
    Lõvgren TN; Heinonen J; Loftfield RB
    J Biol Chem; 1975 May; 250(10):3854-60. PubMed ID: 1092679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stereochemical and positional isotope exchange study of the mechanism of activation of isoleucine by isoleucyl-tRNA synthetase from Escherichia coli.
    Lowe G; Sproat BS; Tansley G; Cullis PM
    Biochemistry; 1983 Mar; 22(5):1229-36. PubMed ID: 6340735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of aminoacylation of tRNA. Proof of the aminoacyl adenylate pathway for the isoleucyl- and tyrosyl-tRNA synthetases from Escherichia coli K12.
    Fersht AR; Kaethner MM
    Biochemistry; 1976 Feb; 15(4):818-23. PubMed ID: 764868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of L-isoleucyl-tRNA synthetase with L-isoleucyl-bromomethyl ketone. The effect of the catalytic steps.
    Rainey P; Hammer-Raber B; Kula MR; Holler E
    Eur J Biochem; 1977 Aug; 78(1):239-49. PubMed ID: 334533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Labelling of L-isoleucine tRNA ligase from Escherichia coli with L-isoleucyl-bromomethyl ketone.
    Rainey P; Holler E; Kula MR
    Eur J Biochem; 1976 Apr; 63(2):419-26. PubMed ID: 770172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of sulfhydryl groups required for the catalytic activity of gramicidin S synthetase and isoleucyl tRNA synthetase.
    Kanda M; Hori K; Kurotsu T; Miura S; Saito Y
    J Biochem; 1984 Sep; 96(3):701-11. PubMed ID: 6389530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of aminoacyl-tRNA synthetases with pyridoxal-5'-phosphate. Identification of the labeled amino acid residues.
    Kalogerakos T; Hountondji C; Berne PF; Dukta S; Blanquet S
    Biochimie; 1994; 76(1):33-44. PubMed ID: 8031903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoleucyl transfer ribonucleic acid synthetase. Steady-state kinetic analysis.
    Moe JG; Piszkiewicz D
    Biochemistry; 1979 Jun; 18(13):2804-10. PubMed ID: 383140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs.
    Freist W; Sternbach H; Cramer F
    Eur J Biochem; 1982 Nov; 128(2-3):315-29. PubMed ID: 6129973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interacting binding sites of isoleucyl-tRNA synthetase from Escherichia coli studied by equilibrium partition.
    Hustedt H; Flossdorf J; Kula MR
    Eur J Biochem; 1977 Mar; 74(1):199-202. PubMed ID: 323007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aminoacyl transfer RNA formation. V. Effect of ethylenediaminetetraacetate on isoleucyl transfer RNA formation stimulated by either spermine or Mg2+.
    Takeda Y; Onishi T
    J Biol Chem; 1975 May; 250(10):3878-82. PubMed ID: 805133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the binding of aminoalkyl adenylates to isoleucyl-tRNA synthetase from Escherichia coli MRE 600.
    Flossdorf J; Marutzky R; Messer K; Kula MR
    Nucleic Acids Res; 1977 Mar; 4(3):673-83. PubMed ID: 325520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR analyses of the conformations of L-isoleucine and L-valine bound to Escherichia coli isoleucyl-tRNA synthetase.
    Kohda D; Kawai G; Yokoyama S; Kawakami M; Mizushima S; Miyazawa T
    Biochemistry; 1987 Oct; 26(20):6531-8. PubMed ID: 3322383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of aminoacylation of tRNA. Influence of spermine on the kinetics of aminoacyl-tRNA synthetases by isoleucyl- and valyl-tRNA synthetases from Mycobacterium smegmatis.
    Natarajan V; Gopinathan KP
    Biochim Biophys Acta; 1981 Jun; 654(1):94-101. PubMed ID: 6912073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonprotein amino acid furanomycin, unlike isoleucine in chemical structure, is charged to isoleucine tRNA by isoleucyl-tRNA synthetase and incorporated into protein.
    Kohno T; Kohda D; Haruki M; Yokoyama S; Miyazawa T
    J Biol Chem; 1990 Apr; 265(12):6931-5. PubMed ID: 2182633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.