These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7004888)

  • 41. [Comparison of evoked potential changes from lateral geniculate body and visual cortex by stimulation of the medial septal nucleus and mesencephalic reticular formation in rabbits].
    Haschke R; Dove A; Dove U
    Acta Biol Med Ger; 1978; 37(2):275-89. PubMed ID: 706942
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reticular inhibition of internuncial cells in the rat lateral geniculate body.
    Fukuda Y; Iwama K
    Brain Res; 1971 Dec; 35(1):107-18. PubMed ID: 4332421
    [No Abstract]   [Full Text] [Related]  

  • 43. Characterization of superior cervical ganglion neurons that project to the submandibular glands, the eyes, and the pineal gland in rats.
    Luebke JI; Wright LL
    Brain Res; 1992 Aug; 589(1):1-14. PubMed ID: 1358399
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Motivational dependence of changes in visual evoked potentials in rats during water deprivation].
    Kolle U; Bartsch P
    Biomed Biochim Acta; 1988; 47(12):1059-64. PubMed ID: 3254152
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diazepam suppression of evoked after-discharges in rat lateral geniculate nucleus and visual cortex.
    Bigler ED; Eidelberg E
    Proc West Pharmacol Soc; 1976; 19():435-8. PubMed ID: 996020
    [No Abstract]   [Full Text] [Related]  

  • 46. Melatonin modifies the spontaneous multiunit activity recorded in several brain nuclei of freely behaving rats.
    Naranjo-Rodríguez EB; Prieto-Gómez B; Reyes-Vázquez C
    Brain Res Bull; 1991 Nov; 27(5):595-600. PubMed ID: 1756377
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrical responses to direct and indirect photic stimulation of the pineal gland in the pigeon.
    Semm P; Demaine C
    J Neural Transm; 1983; 58(3-4):281-9. PubMed ID: 6319595
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Photically released trains of potentials following local application of ethosuximide into the corpus geniculatum laterale].
    Kästner I; Rougerie A
    Acta Biol Med Ger; 1978; 37(4):677-9. PubMed ID: 735636
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flash-evoked responses of two types of principal cells of the rat lateral geniculate body.
    Fukuda Y; Sugitani M; Iwama K
    Brain Res; 1973 Jul; 57(1):208-12. PubMed ID: 4716753
    [No Abstract]   [Full Text] [Related]  

  • 50. Central tegmental alteration of cat lateral geniculate activity.
    Tatton WG; Crapper DR
    Brain Res; 1972 Dec; 47(2):371-87. PubMed ID: 4642569
    [No Abstract]   [Full Text] [Related]  

  • 51. Presynaptic depolarization and extracellular potassium in the cat lateral geniculate nucleus.
    Singer W; Lux HD
    Brain Res; 1973 Dec; 64():17-33. PubMed ID: 4360876
    [No Abstract]   [Full Text] [Related]  

  • 52. [The effect of various wave lengths of light and various duration of impulse times on suppression of n-acetyltransferase activity in the rat pineal gland].
    Jarmak A; Zawilska JB; Nowak JZ
    Klin Oczna; 1998; 100(2):77-80. PubMed ID: 9695540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Signal transmission from the suprachiasmatic nucleus to the pineal gland via the paraventricular nucleus: analysed from arg-vasopressin peptide, rPer2 mRNA and AVP mRNA changes and pineal AA-NAT mRNA after the melatonin injection during light and dark periods.
    Isobe Y; Nishino H
    Brain Res; 2004 Jul; 1013(2):204-11. PubMed ID: 15193530
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Visually evoked responses of lateral geniculate body neurons on electrical stimulation of brain sites yielding self stimulation in rats].
    Kolle U; Zippel U; Gabriel HJ
    Acta Biol Med Ger; 1978; 37(2):267-74. PubMed ID: 706941
    [No Abstract]   [Full Text] [Related]  

  • 55. [Role of specific and nonspecific afferent currents in forming evoked brain potentials to photic stimulation in the cat].
    Lavrov VV
    Neirofiziologiia; 1988; 20(1):3-7. PubMed ID: 3380209
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Endocrine control of appetite: gastrointestinal hormonal effects on CNS appetitive structures.
    Schanzer MC; Jacobson ED; Dafny N
    Neuroendocrinology; 1978; 25(6):329-42. PubMed ID: 307189
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Suppression of pineal multiunit response to flash after habenular lesion in quail.
    Herbuté S; Baylé JD
    Am J Physiol; 1977 Oct; 233(4):E293-7. PubMed ID: 910942
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The pineal gland: photoreception and coupling of behavioral, metabolic, and cardiovascular circadian outputs.
    Warren WS; Cassone VM
    J Biol Rhythms; 1995 Mar; 10(1):64-79. PubMed ID: 7632982
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Signal transmission in the photosensitive pineal organ of the rainbow trout: modulation of ganglion cell activity by intrinsic dopamine.
    Brandstätter R; Zaunreiter M; Fait E; Hermann A
    Neurochem Int; 1995 Dec; 27(6):473-9. PubMed ID: 8574176
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Evoked responses of the lateral geniculate body to photic stimulation in intact and visually deprived rabbits].
    Pisareva NL
    Neirofiziologiia; 1978; 10(5):504-9. PubMed ID: 703903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.