These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 7005227)
1. Biosynthesis of bile acids in man. An in vivo evaluation of the conversion of R and S 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic and 3 alpha, 7 alpha, 12 alpha-24 xi-tetrahydroxy-5 beta-cholestanoic acids to cholic acid. Swell L; Gustafsson J; Danielsson H; Schwartz CC; Vlahcevic ZR J Biol Chem; 1981 Jan; 256(2):912-6. PubMed ID: 7005227 [TBL] [Abstract][Full Text] [Related]
2. Formation of varanic acid, 3 alpha, 7 alpha, 12 alpha, 24-tetrahydroxy-5 beta-cholestanoic acid from 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid in Bombina orientalis. Une M; Inoue A; Hoshita T Steroids; 1996 Nov; 61(11):639-41. PubMed ID: 8916357 [TBL] [Abstract][Full Text] [Related]
3. Defective peroxisomal cleavage of the C27-steroid side chain in the cerebro-hepato-renal syndrome of Zellweger. Kase BF; Björkhem I; Hågå P; Pedersen JI J Clin Invest; 1985 Feb; 75(2):427-35. PubMed ID: 3973012 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis of cholic acid in rat liver: formation of cholic acid from 3 alpha, 7 alpha, 12 alpha-trihydroxy- and 3 alpha, 7 alpha, 12 alpha, 24-tetrahydroxy-5 beta-cholestanoic acids. Gustafsson J Lipids; 1980 Feb; 15(2):113-21. PubMed ID: 7374359 [TBL] [Abstract][Full Text] [Related]
5. In vivo and vitro studies on formation of bile acids in patients with Zellweger syndrome. Evidence that peroxisomes are of importance in the normal biosynthesis of both cholic and chenodeoxycholic acid. Kase BF; Pedersen JI; Strandvik B; Björkhem I J Clin Invest; 1985 Dec; 76(6):2393-402. PubMed ID: 4077985 [TBL] [Abstract][Full Text] [Related]
6. Human hepatoblastoma cells (HepG2) and rat hepatoma cells are defective in important enzyme activities in the oxidation of the C27 steroid side chain in bile acid formation. Farrants AK; Nilsson A; Pedersen JI J Lipid Res; 1993 Dec; 34(12):2041-50. PubMed ID: 8301225 [TBL] [Abstract][Full Text] [Related]
7. Role of peroxisomes in the biosynthesis of bile acids. Björkhem I; Kase BF; Pedersen JI Scand J Clin Lab Invest Suppl; 1985; 177():23-31. PubMed ID: 3865345 [TBL] [Abstract][Full Text] [Related]
8. Competitive inhibition of side chain oxidation of 3 alpha, 7 alpha-dihydroxy-5 beta-cholestan-26-oic acid by 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestan-26-oic acid in the hamster. Cass OW; Williams GC; Hanson RF J Lipid Res; 1980 Feb; 21(2):186-91. PubMed ID: 7373160 [TBL] [Abstract][Full Text] [Related]
9. In vitro formation of bile acids from di- and trihydroxy-5 beta-cholestanoic acid in human liver peroxisomes. Kase BF; Prydz K; Björkhem I; Pedersen JI Biochim Biophys Acta; 1986 Jun; 877(1):37-42. PubMed ID: 3013317 [TBL] [Abstract][Full Text] [Related]
10. Metabolism of 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid by rat liver in vivo and in vitro. Gustafsson J J Lipid Res; 1979 Feb; 20(2):265-70. PubMed ID: 438665 [TBL] [Abstract][Full Text] [Related]
11. Effect of the side-chain structure on the specificity of beta-oxidation in bile acid biosynthesis in rat liver homogenates. Kurosawa T; Sato M; Watanabe T; Suga T; Tohma M J Lipid Res; 1997 Dec; 38(12):2589-602. PubMed ID: 9458282 [TBL] [Abstract][Full Text] [Related]
12. Sterol 27-hydroxylase in bile acid biosynthesis. Mechanism of oxidation of 5 beta-cholestane-3 alpha,7 alpha,12 alpha,27-tetrol into 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid. Holmberg-Betsholtz I; Lund E; Björkhem I; Wikvall K J Biol Chem; 1993 May; 268(15):11079-85. PubMed ID: 8496170 [TBL] [Abstract][Full Text] [Related]
13. Stereochemistry of intermediates in the conversion of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid to cholic acid by rat liver peroxisomes. Une M; Izumi N; Hoshita T J Biochem; 1993 Feb; 113(2):141-3. PubMed ID: 8468319 [TBL] [Abstract][Full Text] [Related]
14. Bile acids and bile alcohols in two patients with Zellweger (cerebro-hepato-renal) syndrome. Délèze G; Björkhem I; Karlaganis G J Pediatr Gastroenterol Nutr; 1986; 5(5):701-10. PubMed ID: 3761102 [TBL] [Abstract][Full Text] [Related]
15. Stereochemistry of the side chain oxidation of 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol in man. Hanson RF; Szczepanik-Van Leeuwen P; Williams GC J Biol Chem; 1980 Feb; 255(4):1483-5. PubMed ID: 7354041 [TBL] [Abstract][Full Text] [Related]
16. Effect of taurocholate on the conversion of 3alpha, 7alpha, 12alpha-trihydroxy-5beta-cholestan-26-oic acid into cholic acid. Hanson RF; Williams GC Steroids; 1978 Jun; 31(6):809-13. PubMed ID: 694969 [TBL] [Abstract][Full Text] [Related]
17. Formation of chenodeoxycholic acid from 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid by rat liver peroxisomes. Prydz K; Kase BF; Björkhem I; Pedersen JI J Lipid Res; 1986 Jun; 27(6):622-8. PubMed ID: 3746130 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid oxidation and of bile acid secretion in rat liver by fatty acids. Casteels M; Schepers L; Van Eldere J; Eyssen HJ; Mannaerts GP J Biol Chem; 1988 Apr; 263(10):4654-61. PubMed ID: 3350807 [TBL] [Abstract][Full Text] [Related]