These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 7006082)
41. Binding of lectins to culture and vector forms of Trypanosoma rangeli Tejera, 1920 (Protozoa, Kinetoplastida) and to structures of the vector gut. Rudin W; Schwarzenbach M; Hecker H J Protozool; 1989; 36(6):532-8. PubMed ID: 2689636 [TBL] [Abstract][Full Text] [Related]
42. A rhamnose-binding lectin from Rhodnius prolixus and the impact of its silencing on gut bacterial microbiota and Trypanosoma cruzi. Araújo CAC; Pacheco JPF; Waniek PJ; Geraldo RB; Sibajev A; Dos Santos AL; Evangelho VGO; Dyson PJ; Azambuja P; Ratcliffe NA; Castro HC; Mello CB Dev Comp Immunol; 2021 Jan; 114():103823. PubMed ID: 32800901 [TBL] [Abstract][Full Text] [Related]
43. Insights into the microRNA landscape of Rhodnius prolixus, a vector of Chagas disease. Santiago PB; da Silva Bentes KL; da Silva WMC; Praça YR; Charneau S; Chaouch S; Grellier P; Dos Santos Silva Ferraz MA; Bastos IMD; de Santana JM; de Araújo CN Sci Rep; 2023 Aug; 13(1):13120. PubMed ID: 37573416 [TBL] [Abstract][Full Text] [Related]
44. Rhodnius prolixus Life History Outcomes Differ when Infected with Different Trypanosoma cruzi I Strains. Peterson JK; Graham AL; Dobson AP; Chávez OT Am J Trop Med Hyg; 2015 Sep; 93(3):564-72. PubMed ID: 26078316 [TBL] [Abstract][Full Text] [Related]
45. Influence of the stage of infection of Trypanosoma cruzi in guinea-pigs on infectivity to Rhodnius prolixus. Neal RA Ann Trop Med Parasitol; 1977 Mar; 71(1):119-20. PubMed ID: 322624 [No Abstract] [Full Text] [Related]
46. Effects of infection by Trypanosoma cruzi and Trypanosoma rangeli on the reproductive performance of the vector Rhodnius prolixus. Fellet MR; Lorenzo MG; Elliot SL; Carrasco D; Guarneri AA PLoS One; 2014; 9(8):e105255. PubMed ID: 25136800 [TBL] [Abstract][Full Text] [Related]
47. A comparison of Rhodnius prolixus, Triatoma infestans and Panstrongylus megistus in the xenodiagnosis of a chronic Trypanosoma (schizotrypanum) cruzi infection in a rhesus monkey (Macaca mullatta). Miles MA; Patterson JW; Marsden PD; Minter DM Trans R Soc Trop Med Hyg; 1975; 69(4):377-82. PubMed ID: 814658 [TBL] [Abstract][Full Text] [Related]
49. Expression of GP82 and GP90 surface glycoprotein genes of Trypanosoma cruzi during in vivo metacyclogenesis in the insect vector Rhodnius prolixus. Cordero EM; Gentil LG; Crisante G; Ramírez JL; Yoshida N; Añez N; Franco da Silveira J Acta Trop; 2008 Jan; 105(1):87-91. PubMed ID: 17889817 [TBL] [Abstract][Full Text] [Related]
50. A strain of Trypanosoma cruzi, and its biochemical characterization after passage through different invertebrate hosts. Garcia ES; Vieira E; Goncalves AM; Morel CM; Alves MM; Colli W Ann Trop Med Parasitol; 1986 Jun; 80(3):361-3. PubMed ID: 2432842 [No Abstract] [Full Text] [Related]
51. Trypanosoma cruzi reprograms mitochondrial metabolism within the anterior midgut of its vector Rhodnius prolixus during the early stages of infection. Ouali R; Vieira LR; Salmon D; Bousbata S Parasit Vectors; 2024 Sep; 17(1):381. PubMed ID: 39242536 [TBL] [Abstract][Full Text] [Related]
52. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Vieira CS; Waniek PJ; Castro DP; Mattos DP; Moreira OC; Azambuja P Parasit Vectors; 2016 Mar; 9():119. PubMed ID: 26931761 [TBL] [Abstract][Full Text] [Related]
53. First Report of Natural Infection with Trypanosoma cruzi in Rhodnius montenegrensis (Hemiptera, Reduviidae, Triatominae) in Western Amazon, Brazil. Bilheiro AB; da Rosa JA; de Oliveira J; Belintani T; Fontes G; Medeiros JF; Meneguetti DUO; Camargo LMA Vector Borne Zoonotic Dis; 2018 Nov; 18(11):605-610. PubMed ID: 30016209 [TBL] [Abstract][Full Text] [Related]
54. Infecting Triatomines with Trypanosomes. Guarneri AA Methods Mol Biol; 2020; 2116():69-79. PubMed ID: 32221914 [TBL] [Abstract][Full Text] [Related]
55. Nitric oxide effects on Rhodnius prolixus's immune responses, gut microbiota and Trypanosoma cruzi development. Batista KKDS; Vieira CS; Florentino EB; Caruso KFB; Teixeira PTP; Moraes CDS; Genta FA; de Azambuja P; de Castro DP J Insect Physiol; 2020 Oct; 126():104100. PubMed ID: 32822690 [TBL] [Abstract][Full Text] [Related]
56. The interplay between temperature, Trypanosoma cruzi parasite load, and nutrition: Their effects on the development and life-cycle of the Chagas disease vector Rhodnius prolixus. Loshouarn H; Guarneri AA PLoS Negl Trop Dis; 2024 Feb; 18(2):e0011937. PubMed ID: 38306403 [TBL] [Abstract][Full Text] [Related]
57. Chagas' disease and its insect vector. Effect of azadirachtin A on the interaction of a triatomine host (Rhodnius prolixus) and its parasite (Trypanosoma cruzi). Garcia ES; Gonzalez MS; Azambuja P; Rembold H Z Naturforsch C J Biosci; 1989; 44(3-4):317-22. PubMed ID: 2663004 [TBL] [Abstract][Full Text] [Related]
58. Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Azambuja P; Feder D; Garcia ES Exp Parasitol; 2004; 107(1-2):89-96. PubMed ID: 15208042 [TBL] [Abstract][Full Text] [Related]
59. Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner. Elliot SL; Rodrigues Jde O; Lorenzo MG; Martins-Filho OA; Guarneri AA PLoS Negl Trop Dis; 2015 Mar; 9(3):e0003646. PubMed ID: 25793495 [TBL] [Abstract][Full Text] [Related]
60. Trypanosoma cruzi: effects of azadirachtin and ecdysone on the dynamic development in Rhodnius prolixus larvae. Cortez MR; Provençano A; Silva CE; Mello CB; Zimmermann LT; Schaub GA; Garcia ES; Azambuja P; Gonzalez MS Exp Parasitol; 2012 Jul; 131(3):363-71. PubMed ID: 22626520 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]