These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7006597)

  • 21. Preparation of cathepsins B and H by covalent chromatography and characterization of their catalytic sites by reaction with a thiol-specific two-protonic-state reactivity probe. Kinetic study of cathepsins B and H extending into alkaline media and a rapid spectroscopic titration of cathepsin H at pH 3-4.
    Willenbrock F; Brocklehurst K
    Biochem J; 1985 Apr; 227(2):511-9. PubMed ID: 4004778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of the substrate conformations in the active sites of papain, chymopapain, ficin and bromelain by resonance Raman spectroscopy.
    Carey PR; Ozaki Y; Storer AC
    Biochem Biophys Res Commun; 1983 Dec; 117(3):725-31. PubMed ID: 6365089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The thiol proteinases from the latex of Carica papaya L. I. Fractionation, purification and preliminary characterization.
    Dubois T; Jacquet A; Schnek AG; Looze Y
    Biol Chem Hoppe Seyler; 1988 Aug; 369(8):733-40. PubMed ID: 3214554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of benzofuroxan as a chromophoric oxidizing agent for thiol groups by using its reactions with papain, ficin, bromelain and low-molecular-weight thiols.
    Shipton M; Stuchbury T; Brocklehurst K
    Biochem J; 1977 Mar; 161(3):627-37. PubMed ID: 851434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The amino acid sequence of chymopapain from Carica papaya.
    Watson DC; Yaguchi M; Lynn KR
    Biochem J; 1990 Feb; 266(1):75-81. PubMed ID: 2106878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ionization characteristics of the Cys-25/His-159 interactive system and of the modulatory group of papain: resolution of ambiguity by electronic perturbation of the quasi-2-mercaptopyridine leaving group in a new pyrimidyl disulphide reactivity probe.
    Mellor GW; Thomas EW; Topham CM; Brocklehurst K
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):289-96. PubMed ID: 8439297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of action of cysteine proteinases: oxyanion binding site is not essential in the hydrolysis of specific substrates.
    Asbóth B; Stokum E; Khan IU; Polgár L
    Biochemistry; 1985 Jan; 24(3):606-9. PubMed ID: 3888259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1,3-diazole moiety.
    Stuchbury T; Shipton M; Norris R; Malthouse JP; Brocklehurst K; Herbert JA; Suschitzky H
    Biochem J; 1975 Nov; 151(2):417-32. PubMed ID: 3168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis.
    Topham CM; Salih E; Frazao C; Kowlessur D; Overington JP; Thomas M; Brocklehurst SM; Patel M; Thomas EW; Brocklehurst K
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):79-92. PubMed ID: 1741760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The structural origins of the unusual specificities observed in the isolation of chymopapain M and actinidin by covalent chromatography and the lack of inhibition of chymopapain M by cystatin.
    Thomas MP; Verma C; Boyd SM; Brocklehurst K
    Biochem J; 1995 Feb; 306 ( Pt 1)(Pt 1):39-46. PubMed ID: 7864827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rates of thiol-disulfide interchange reactions involving proteins and kinetic measurements of thiol pKa values.
    Shaked Z; Szajewski RP; Whitesides GM
    Biochemistry; 1980 Sep; 19(18):4156-66. PubMed ID: 6251863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disulfide bond formation between the active-site thiol and one of the several free thiol groups of chymopapain.
    Kóródi I; Asbóth B; Polgár L
    Biochemistry; 1986 Nov; 25(22):6895-900. PubMed ID: 3801400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for a close similarity in the catalytic sites of papain and ficin in near-neutral media despite differences in acidic and alkaline media. Kinetics of the reactions of papain and ficin with chloroacetate.
    Brocklehurst K; Mushiri SM; Patel G; Willenbrock F
    Biochem J; 1982 Jan; 201(1):101-4. PubMed ID: 7044370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The proteolytic activities of chymopapain, papain, and papaya proteinase III.
    Zucker S; Buttle DJ; Nicklin MJ; Barrett AJ
    Biochim Biophys Acta; 1985 Apr; 828(2):196-204. PubMed ID: 3919769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The preparation of fully active chymopapain free of contaminating proteinases.
    Buttle DJ; Dando PM; Coe PF; Sharp SL; Shepherd ST; Barrett AJ
    Biol Chem Hoppe Seyler; 1990 Nov; 371(11):1083-8. PubMed ID: 2085414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunoglobulin E antibodies to papaya proteinases and their relevance to chemonucleolysis.
    Dando PM; Sharp SL; Buttle DJ; Barrett AJ
    Spine (Phila Pa 1976); 1995 May; 20(9):981-5. PubMed ID: 7631245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of highly active papaya peptidases A and B from commercial chymopapain.
    Polgár L
    Biochim Biophys Acta; 1981 Apr; 658(2):262-9. PubMed ID: 7018581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cooperativity in the unfolding transitions of cysteine proteinases. Calorimetric study of the heat denaturation of chymopapain and papain.
    Solís-Mendiola S; Rojo-Domínguez A; Hernández-Arana A
    Biochim Biophys Acta; 1993 Nov; 1203(1):121-5. PubMed ID: 8218380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reactions of L-ergothioneine and some other aminothiones with2,2'-and 4,4'-dipyridyl disulphides and of L-ergothioneine with iodoacetamide. 2-Mercaptoimidazoles, 2- and 4-thiopyridones, thiourea and thioacetamide as highly reactive neutral sulphur nucleophils.
    Carlsson J; Kierstan MP; Brocklehurst K
    Biochem J; 1974 Apr; 139(1):221-35. PubMed ID: 4463944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clarification of the pH-dependent kinetic behaviour of papain by using reactivity probes and analysis of alkylation and catalysed acylation reactions in terms of multihydronic state models: implications for electrostatics calculations and interpretation of the consequences of site-specific mutations such as Asp-158-Asn and Asp-158-Glu.
    Mellor GW; Patel M; Thomas EW; Brocklehurst K
    Biochem J; 1993 Aug; 294 ( Pt 1)(Pt 1):201-10. PubMed ID: 8103322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.