These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 7006597)

  • 41. Affinity purification of the novel cysteine proteinase papaya proteinase IV, and papain from papaya latex.
    Buttle DJ; Kembhavi AA; Sharp SL; Shute RE; Rich DH; Barrett AJ
    Biochem J; 1989 Jul; 261(2):469-76. PubMed ID: 2505761
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction between chicken cystatin and the cysteine proteinases actinidin, chymopapain A, and ficin.
    Björk I; Ylinenjärvi K
    Biochemistry; 1990 Feb; 29(7):1770-6. PubMed ID: 2331464
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Natural structural variation in enzymes as a tool in the study of mechanism exemplified by a comparison of the catalytic-site structure and characteristics of cathepsin B and papain. pH-dependent kinetics of the reactions of cathepsin B from bovine spleen and from rat liver with a thiol-specific two-protonic-state probe (2,2'-dipyridyl disulphide) and with a specific synthetic substrate (N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide).
    Willenbrock F; Brocklehurst K
    Biochem J; 1984 Sep; 222(3):805-14. PubMed ID: 6534384
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Factors effecting the thermostability of cysteine proteinases from Carica papaya.
    Sumner IG; Harris GW; Taylor MA; Pickersgill RW; Owen AJ; Goodenough PW
    Eur J Biochem; 1993 May; 214(1):129-34. PubMed ID: 8508784
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Supracrystallographic resolution of interactions contributing to enzyme catalysis by use of natural structural variants and reactivity-probe kinetics.
    Brocklehurst K; Brocklehurst SM; Kowlessur D; O'Driscoll M; Patel G; Salih E; Templeton W; Thomas E; Topham CM; Willenbrock F
    Biochem J; 1988 Dec; 256(2):543-58. PubMed ID: 3223929
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reactivities of the various protonic states in the reactions of papain and of L-cysteine with 2,2'- and with 4,4'- dipyridyl disulphide: evidence for nucleophilic reactivity in the un-ionized thiol group of the cysteine-25 residue of papain occasioned by its interaction with the histidine-159-asparagine-175 hydrogen-bonded system.
    Brocklehurst K; Little G
    Biochem J; 1972 Jun; 128(2):471-4. PubMed ID: 5084800
    [No Abstract]   [Full Text] [Related]  

  • 47. The thiol group of bovine serum albumin. High reactivity at acidic pH as measured by the reaction with 2,2'-dipyridyl disulphide.
    Svenson A; Carlsson J
    Biochim Biophys Acta; 1975 Aug; 400(2):433-8. PubMed ID: 240419
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The thiol proteinases from the latex of Carica papaya L. III. The primary structure of chymopapain.
    Jacquet A; Kleinschmidt T; Schnek AG; Looze Y; Braunitzer G
    Biol Chem Hoppe Seyler; 1989 May; 370(5):425-34. PubMed ID: 2500950
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation of the catalytic site of actinidin by using benzofuroxan as a reactivity probe with selectivity for the thiolate-imidazolium ion-pair systems of cysteine proteinases. Evidence that the reaction of the ion-pair of actinidin (pKI 3.0, pKII 9.6) is modulated by the state of ionization of a group associated with a molecular pKa of 5.5.
    Salih E; Brocklehurst K
    Biochem J; 1983 Sep; 213(3):713-8. PubMed ID: 6311173
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemical evidence for the pH-dependent control of ion-pair geometry in cathepsin B. Benzofuroxan as a reactivity probe sensitive to differences in the mutual disposition of the thiolate and imidazolium components of cysteine proteinase catalytic sites.
    Willenbrock F; Brocklehurst K
    Biochem J; 1986 Aug; 238(1):103-7. PubMed ID: 3800926
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Covalent chromatography. Preparation of fully active papain from dried papaya latex.
    Brocklehurst K; Carlsson J; Kierstan MP; Crook EM
    Biochem J; 1973 Jul; 133(3):573-84. PubMed ID: 4733241
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Variation in the P2-S2 stereochemical selectivity towards the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides among the cysteine proteinases papain, ficin and actinidin.
    Patel M; Kayani IS; Mellor GW; Sreedharan S; Templeton W; Thomas EW; Thomas M; Brocklehurst K
    Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):553-9. PubMed ID: 1736903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The thiol proteinases from the latex of Carica papaya L. IV. Proteolytic specificities of chymopapain and papaya proteinase omega determined by digestion of alpha-globin chains.
    Jacquet A; Kleinschmidt T; Dubois T; Schnek AG; Looze Y; Braunitzer G
    Biol Chem Hoppe Seyler; 1989 Aug; 370(8):819-29. PubMed ID: 2686700
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Subsite differences between the active centres of papaya peptidase A and papain as revealed by affinity chromatography. Purification of papaya peptidase A by ionic-strength-dependent affinity adsorption on an immobilized peptide inhibitor of papain.
    Schack P; Kaarsholm NC
    Biochem J; 1984 May; 219(3):727-33. PubMed ID: 6378179
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thiol-disulphide interchange in tubulin: kinetics and the effect on polymerization.
    Britto PJ; Knipling L; McPhie P; Wolff J
    Biochem J; 2005 Jul; 389(Pt 2):549-58. PubMed ID: 15743274
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reactivity of small thiolate anions and cysteine-25 in papain toward methyl methanethiosulfonate.
    Roberts DD; Lewis SD; Ballou DP; Olson ST; Shafer JA
    Biochemistry; 1986 Sep; 25(19):5595-601. PubMed ID: 3778876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic constants for the hydrolysis of aggrecan by the papaya proteinases and their relevance for chemonucleolysis.
    Dekeyser PM; Buttle DJ; Devreese B; Van Beeumen J; Demeester J; Lauwers A
    Arch Biochem Biophys; 1995 Jul; 320(2):375-9. PubMed ID: 7625846
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chymopapain. Chromatographic purification and immunological characterization.
    Buttle DJ; Barrett AJ
    Biochem J; 1984 Oct; 223(1):81-8. PubMed ID: 6437389
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monoclonal antibodies to the two most basic papaya proteinases.
    Goodenough PW; Kilshaw PJ; McEwan F; Owen AJ
    Biosci Rep; 1986 Aug; 6(8):759-66. PubMed ID: 3545314
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A re-evaluation of the nomenclature of the cysteine proteinases of Carica papaya and a rational basis for their identification.
    Brocklehurst K; Salih E
    Biochem J; 1983 Aug; 213(2):559-60. PubMed ID: 6351846
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.