BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7006603)

  • 1. A mechanism for the enzymic oxidation of methanol involving methoxatin.
    Forrest HS; Salisbury SA; Kilty CG
    Biochem Biophys Res Commun; 1980 Nov; 97(1):248-51. PubMed ID: 7006603
    [No Abstract]   [Full Text] [Related]  

  • 2. Bacterial oxidation of methane and methanol.
    Anthony C
    Adv Microb Physiol; 1986; 27():113-210. PubMed ID: 3020939
    [No Abstract]   [Full Text] [Related]  

  • 3. NAD-dependent, PQQ-containing methanol dehydrogenase: a bacterial dehydrogenase in a multienzyme complex.
    Duine JA; Frank J; Berkhout MP
    FEBS Lett; 1984 Mar; 168(2):217-21. PubMed ID: 6373362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The preferred reaction path for the oxidation of methanol by PQQ-containing methanol dehydrogenase: addition-elimination versus hydride-transfer mechanism.
    Leopoldini M; Russo N; Toscano M
    Chemistry; 2007; 13(7):2109-17. PubMed ID: 17149777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of action of methoxatin-dependent alcohol dehydrogenase.
    Mincey T; Bell JA; Mildvan AS; Abeles RH
    Biochemistry; 1981 Dec; 20(26):7502-9. PubMed ID: 6275882
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on the mechanism of action of methoxatin-requiring methanol dehydrogenase: reaction of enzyme with electron-acceptor dye.
    Parkes C; Abeles RH
    Biochemistry; 1984 Dec; 23(26):6355-63. PubMed ID: 6442163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation of coenzyme pyrroloquinoline quinone and role of Ca2+ in the catalytic mechanism of quinoprotein methanol dehydrogenase.
    Zheng YJ; Bruice TC
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11881-6. PubMed ID: 9342331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replacement of methoxatin by 4,7-phenanthroline-5,6-dione and the inability of other phenanthroline quinones, as well as 7,9-di-decarboxy methoxatin, to serve as cofactors for the methoxatin-requiring glucose dehydrogenase of Acinetobacter calcoaceticus.
    Conlin M; Forrest HS; Bruice TC
    Biochem Biophys Res Commun; 1985 Sep; 131(2):564-6. PubMed ID: 4052066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of multiple ligand binding on kinetic isotope effects in PQQ-dependent methanol dehydrogenase.
    Hothi P; Basran J; Sutcliffe MJ; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3966-78. PubMed ID: 12667088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The oxidation of methanol in gram-negative bacteria.
    Anthony C
    FEMS Microbiol Rev; 1990 Dec; 7(3-4):209-14. PubMed ID: 1965566
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of pyrrolo-quinoline semiquinone forms in the mechanism of action of methanol dehydrogenase.
    de Beer R; Duine JA; Frank J; Westerling J
    Eur J Biochem; 1983 Jan; 130(1):105-9. PubMed ID: 6297893
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of a novel methanol dehydrogenase containing a Ba2+ ion at the active site.
    Goodwin MG; Anthony C
    Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):673-9. PubMed ID: 8809062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model studies on calcium-containing quinoprotein alcohol dehydrogenases. Catalytic role of Ca2+ for the oxidation of alcohols by coenzyme PQQ (4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2, 7,9-tricarboxylic acid).
    Itoh S; Kawakami H; Fukuzumi S
    Biochemistry; 1998 May; 37(18):6562-71. PubMed ID: 9572874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrroloquinoline Quinone Ethanol Dehydrogenase in Methylobacterium extorquens AM1 Extends Lanthanide-Dependent Metabolism to Multicarbon Substrates.
    Good NM; Vu HN; Suriano CJ; Subuyuj GA; Skovran E; Martinez-Gomez NC
    J Bacteriol; 2016 Nov; 198(22):3109-3118. PubMed ID: 27573017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid procedure for the in situ assay of periplasmic, PQQ-dependent methanol dehydrogenase in intact single bacterial colonies.
    Vemuluri VR; Shaw S; Autenrieth C; Ghosh R
    J Microbiol Methods; 2017 Jun; 137():46-49. PubMed ID: 28344084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The methoxatin semiquinone: a pulse radiolysis study.
    Faraggi M; Chandrasekar R; McWhirter RB; Klapper MH
    Biochem Biophys Res Commun; 1986 Sep; 139(3):955-60. PubMed ID: 3768009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico studies of the mechanism of methanol oxidation by quinoprotein methanol dehydrogenase.
    Reddy SY; Bruice TC
    J Am Chem Soc; 2003 Jul; 125(27):8141-50. PubMed ID: 12837084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some electrochemical and chemical properties of methoxatin and analogous quinoquinones.
    Eckert TS; Bruice TC; Gainor JA; Weinreb SM
    Proc Natl Acad Sci U S A; 1982 Apr; 79(8):2533-6. PubMed ID: 6953411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the structure and linkage of the covalent cofactor of methylamine dehydrogenase from the methylotrophic bacterium W3A1.
    McIntire WS; Stults JT
    Biochem Biophys Res Commun; 1986 Dec; 141(2):562-8. PubMed ID: 3801015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization of a derivative of a new coenzyme, methoxatin.
    Forrest HS; Salisbury SA; Sperl G
    Biochim Biophys Acta; 1981 Aug; 676(2):226-9. PubMed ID: 7260117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.