These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7007237)

  • 1. Effect of dietary salt on hemodynamics of established renal hypertension in the rabbit. Implications for the autoregulation theory of hypertension.
    Korner PI; Oliver JR; Casley DJ
    Hypertension; 1980; 2(6):794-801. PubMed ID: 7007237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in cardiac output and total peripheral resistance during development of renal hypertension in the rabbit: lack of confomity with the autoregulation theory.
    Fletcher PJ; Korner PI; Angus JA; Oliver JR
    Circ Res; 1976 Nov; 39(5):633-9. PubMed ID: 975451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural factors increase blood pressure through the interaction of resistance vessel geometry with neurohumoral and local factors: estimates in rabbits with renal cellophane-wrap hypertension with intact effectors and during neurohumoral blockade.
    Wright CE; Angus JA; Korner PI
    J Hypertens; 2002 Mar; 20(3):471-83. PubMed ID: 11875315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal denervation prevents sodium retention and hypertension in salt-sensitive rabbits with genetic baroreflex impairment.
    Weinstock M; Gorodetsky E; Kalman R
    Clin Sci (Lond); 1996 Apr; 90(4):287-93. PubMed ID: 8777835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The present status of the autoregulation theory of the pathogenesis of hypertension.
    Korner PI
    Clin Exp Pharmacol Physiol; 1980; 7(5):521-6. PubMed ID: 7449194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the renal nerves in the maintenance of DOCA-salt hypertension in the rat. Influence on the renal vasculature and sodium excretion.
    Katholi RE; Naftilan AJ; Bishop SP; Oparil S
    Hypertension; 1983; 5(4):427-35. PubMed ID: 6345357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circulating digoxin-like immunoreactivity in renal hypertensive rabbits: lack of modulation by alterations in dietary sodium intake.
    Scott PJ; Little PJ; Bobik A
    J Hypertens; 1988 Mar; 6(3):205-9. PubMed ID: 3361119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of angiotensin II in renal wrap hypertension.
    Denton KM; Anderson WP
    Hypertension; 1985; 7(6 Pt 1):893-8. PubMed ID: 3000937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of varying perfusion pressures on the output of sodium and renin and the vascular resistance in kidneys of rats with "post-salt" hypertension and Kyoto spontaneous hypertension.
    Tobian L; Johnson MA; Lange J; Magraw S
    Circ Res; 1975 Jun; 36(6 Suppl 1):162-70. PubMed ID: 1132075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adrenergic activity and peripheral hemodynamics in relation to sodium sensitivity in patients with essential hypertension.
    Koolen MI; van Brummelen P
    Hypertension; 1984; 6(6 Pt 1):820-5. PubMed ID: 6519741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of high sodium intake and angiotensin antagonist in rabbits with severe and moderate hypertension induced by constriction of one renal artery.
    Romero JC; Holmes DR; Strong CG
    Circ Res; 1977 May; 40(5 Suppl 1):I17-23. PubMed ID: 870227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomic blockade and the Valsalva maneuver in patients on maintenance hemodialysis: a hemodynamic study.
    McGrath BP; Tiller DJ; Bune A; Chalmers JP; Korner PI; Uther JB
    Kidney Int; 1977 Oct; 12(4):294-302. PubMed ID: 599840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uninephrectomy in young age or chronic salt loading causes salt-sensitive hypertension in adult rats.
    Carlström M; Sällström J; Skøtt O; Larsson E; Persson AE
    Hypertension; 2007 Jun; 49(6):1342-50. PubMed ID: 17438306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced total peripheral vascular responsiveness in hypertension accords with the amplifier hypothesis.
    Wright CE; Angus JA
    J Hypertens; 1999 Dec; 17(12 Pt 1):1687-96. PubMed ID: 10658934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole body autoregulation in reduced renal mass hypertension.
    Hinojosa-Laborde C; Frohlich BH; Cowley AW
    Hypertension; 1992 Nov; 20(5):659-65. PubMed ID: 1358822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual hemodynamic mechanisms for salt-induced hypertension in Dahl salt-sensitive rats.
    Simchon S; Manger WM; Brown TW
    Hypertension; 1991 Jun; 17(6 Pt 2):1063-71. PubMed ID: 2045150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of high salt intake on hemodynamic responses to isometric exercise in normotensive subjects and in patients with essential hypertension.
    Ishii M; Sugimoto T; Atarashi K; Igari T; Uehara Y; Doi M; Takagi M; Matsuoka H; Ikeda T; Murao S
    Jpn Circ J; 1983 Oct; 47(10):1248-54. PubMed ID: 6355552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanism for salt-sensitive hypertension: abnormal dietary sodium-mediated vascular response to angiotensin-II.
    Chamarthi B; Williams JS; Williams GH
    J Hypertens; 2010 May; 28(5):1020-6. PubMed ID: 20216091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal renal hemodynamics in salt-sensitive patients with essential hypertension.
    Ando K; Fujita T
    Jpn Circ J; 1985 Sep; 49(9):984-9. PubMed ID: 4068205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamics and blood volume in angiotensin II salt-dependent hypertension in dogs.
    Krieger JE; Roman RJ; Cowley AW
    Am J Physiol; 1989 Nov; 257(5 Pt 2):H1402-12. PubMed ID: 2589496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.