BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 7007348)

  • 21. In vitro activation of inactive nitrogenase component I with molybdate.
    Pienkos PT; Klevickis S; Brill WJ
    J Bacteriol; 1981 Jan; 145(1):248-56. PubMed ID: 6936396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase.
    Miller RW; Eady RR
    Biochem J; 1988 Dec; 256(2):429-32. PubMed ID: 3223922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of a Mo-Nitrogenase Variant Containing a Citrate-Substituted Cofactor.
    Liedtke J; Lee CC; Tanifuji K; Jasniewski AJ; Ribbe MW; Hu Y
    Chembiochem; 2021 Jan; 22(1):151-155. PubMed ID: 32918851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The molybdenum--iron protein of Klebsiella pneumoniae nitrogenase. Evidence for non-identical subunits from peptide 'mapping'.
    Kennedy C; Eady RR; Kondorosi E; Rekosh DK
    Biochem J; 1976 May; 155(2):383-9. PubMed ID: 779772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic evidence for an Azotobacter vinelandii nitrogenase lacking molybdenum and vanadium.
    Pau RN; Mitchenall LA; Robson RL
    J Bacteriol; 1989 Jan; 171(1):124-9. PubMed ID: 2914845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of an alternative nitrogen fixation system in Azotobacter vinelandii.
    Bishop PE; Jarlenski DM; Hetherington DR
    J Bacteriol; 1982 Jun; 150(3):1244-51. PubMed ID: 6281240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catechol siderophores control tungsten uptake and toxicity in the nitrogen-fixing bacterium Azotobacter vinelandii.
    Wichard T; Bellenger JP; Loison A; Kraepiel AM
    Environ Sci Technol; 2008 Apr; 42(7):2408-13. PubMed ID: 18504973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A molecular pathway for the egress of ammonia produced by nitrogenase.
    Dance I
    Sci Rep; 2013 Nov; 3():3237. PubMed ID: 24241241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron transfer to nitrogenase. Characterization of flavodoxin from Azotobacter chroococcum and comparison of its redox potentials with those of flavodoxins from Azotobacter vinelandii and Klebsiella pneumoniae (nifF-gene product).
    Deistung J; Thorneley RN
    Biochem J; 1986 Oct; 239(1):69-75. PubMed ID: 3541922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Azotobacter vinelandii Nitrogenase Activity, Hydrogen Production, and Response to Oxygen Exposure.
    Natzke J; Noar J; Bruno-Bárcena JM
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915110
    [No Abstract]   [Full Text] [Related]  

  • 31. Nitrogenase X: Mössbauer and EPR studies on reversibly oxidized MoFe protein from Azotobacter vinelandii OP. Nature of the iron centers.
    Zimmermann R; Münck E; Brill WJ; Shah VK; Henzl MT; Rawlings J; Orme-Johnson WH
    Biochim Biophys Acta; 1978 Dec; 537(2):185-207. PubMed ID: 215215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo energetics and control of nitrogen fixation: changes in the adenylate energy charge and adenosine 5'-diphosphate/adenosine 5'-triphosphate ratio of cells during growth on dinitrogen versus growth on ammonia.
    Upchurch RG; Mortenson LE
    J Bacteriol; 1980 Jul; 143(1):274-84. PubMed ID: 6995432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation and order of involvement of molybdoproteins during synthesis of molybdoenzymes in Clostridium pasteurianum.
    Hinton SM; Mortenson LE
    J Bacteriol; 1985 May; 162(2):485-93. PubMed ID: 3857224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Siderophore production in Azotobacter vinelandii in response to Fe-, Mo- and V-limitation.
    McRose DL; Baars O; Morel FMM; Kraepiel AML
    Environ Microbiol; 2017 Sep; 19(9):3595-3605. PubMed ID: 28703469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of the Mo-Fe protein component of Azotobacter vinelandii nitrogenase. Analytical ultracentrifugation and electron microscopy studies.
    Voordouw G; Haaker H; Van Breemen JF; Van Bruggen EF; Eady RR
    Eur J Biochem; 1983 Nov; 136(2):397-401. PubMed ID: 6578928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity.
    Rodríguez-Quiñones F; Bosch R; Imperial J
    J Bacteriol; 1993 May; 175(10):2926-35. PubMed ID: 8491713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of nitrogenase-2 in Azotobacter vinelandii by ammonium, molybdenum, and vanadium.
    Jacobitz S; Bishop PE
    J Bacteriol; 1992 Jun; 174(12):3884-8. PubMed ID: 1597411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen fixation by Azotobacter vinelandii in tungsten-containing medium.
    Hales BJ; Case EE
    J Biol Chem; 1987 Nov; 262(33):16205-11. PubMed ID: 3479430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen fixation system of tungsten-resistant mutants of Azotobacter vinelandii.
    Riddle GD; Simonson JG; Hales BJ; Braymer HD
    J Bacteriol; 1982 Oct; 152(1):72-80. PubMed ID: 6956567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordinated regulation of nitrogen fixation and molybdate transport by molybdenum.
    Demtröder L; Narberhaus F; Masepohl B
    Mol Microbiol; 2019 Jan; 111(1):17-30. PubMed ID: 30325563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.