BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 7007374)

  • 1. Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases.
    Green GD; Shaw E
    J Biol Chem; 1981 Feb; 256(4):1923-8. PubMed ID: 7007374
    [No Abstract]   [Full Text] [Related]  

  • 2. The properties of peptidyl diazoethanes and chloroethanes as protease inactivators.
    Wikstrom P; Kirschke H; Stone S; Shaw E
    Arch Biochem Biophys; 1989 Apr; 270(1):286-93. PubMed ID: 2930191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of thiol proteases with peptidyl diazomethyl ketones.
    Shaw E; Green GD
    Methods Enzymol; 1981; 80 Pt C():820-6. PubMed ID: 7043207
    [No Abstract]   [Full Text] [Related]  

  • 4. The affinity-labelling of cathepsin S with peptidyl diazomethyl ketones. Comparison with the inhibition of cathepsin L and calpain.
    Shaw E; Mohanty S; Colic A; Stoka V; Turk V
    FEBS Lett; 1993 Nov; 334(3):340-2. PubMed ID: 8243643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diazomethyl ketone substrate derivatives as active-site-directed inhibitors of thiol proteases. Papain.
    Leary R; Larsen D; Watanabe H; Shaw E
    Biochemistry; 1977 Dec; 16(26):5857-61. PubMed ID: 588560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and properties of Cbz-Phe-Arg-CHN2 (benzyloxycarbonylphenylalanylarginyldiazomethane) as a proteinase inhibitor.
    Zumbrunn A; Stone S; Shaw E
    Biochem J; 1988 Mar; 250(2):621-3. PubMed ID: 3355540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The design of peptidyldiazomethane inhibitors to distinguish between the cysteine proteinases calpain II, cathepsin L and cathepsin B.
    Crawford C; Mason RW; Wikstrom P; Shaw E
    Biochem J; 1988 Aug; 253(3):751-8. PubMed ID: 2845932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inhibition of human neutrophil elastase and cathepsin G by peptidyl 1,2-dicarbonyl derivatives.
    Mehdi S; Angelastro MR; Burkhart JP; Koehl JR; Peet NP; Bey P
    Biochem Biophys Res Commun; 1990 Jan; 166(2):595-600. PubMed ID: 2302225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of some microbial and mammalian proteinases with human blood trypsin inhibitors.
    Tuma J; Parker L
    Biochem Med; 1974 Jan; 9(1):77-84. PubMed ID: 4816579
    [No Abstract]   [Full Text] [Related]  

  • 10. Synthesis of peptidyl fluoromethyl ketones and peptidyl alpha-keto esters as inhibitors of porcine pancreatic elastase, human neutrophil elastase, and rat and human neutrophil cathepsin G.
    Peet NP; Burkhart JP; Angelastro MR; Giroux EL; Mehdi S; Bey P; Kolb M; Neises B; Schirlin D
    J Med Chem; 1990 Jan; 33(1):394-407. PubMed ID: 2296031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additional peptidyl diazomethyl ketones, including biotinyl derivatives, which affinity-label calpain and related cysteinyl proteinases.
    Wikstrom P; Anagli J; Angliker H; Shaw E
    J Enzyme Inhib; 1992; 6(4):259-69. PubMed ID: 1284963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide diazomethyl ketones are inhibitors of subtilisin-type serine proteases.
    Ermer A; Baumann H; Steude G; Peters K; Fittkau S; Dolaschka P; Genov NC
    J Enzyme Inhib; 1990; 4(1):35-42. PubMed ID: 2094769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptidyl diazomethyl ketones inhibit the human rhinovirus 3C protease: effect on virus yield by partial block of P3 polyprotein processing.
    Murray MA; Janc JW; Venkatraman S; Babé LM
    Antivir Chem Chemother; 2001 Sep; 12(5):273-81. PubMed ID: 11900346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of serine proteases by peptidyl fluoromethyl ketones.
    Imperiali B; Abeles RH
    Biochemistry; 1986 Jul; 25(13):3760-7. PubMed ID: 3527255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potent inactivation of cathepsins S and L by peptidyl (acyloxy)methyl ketones.
    Brömme D; Smith RA; Coles PJ; Kirschke H; Storer AC; Krantz A
    Biol Chem Hoppe Seyler; 1994 May; 375(5):343-7. PubMed ID: 8074807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active-site specific inhibitors of elastase.
    Powers JC; Tuhy PM
    Biochemistry; 1973 Nov; 12(23):4767-74. PubMed ID: 4797992
    [No Abstract]   [Full Text] [Related]  

  • 17. Stereoselective synthesis of peptidyl trifluoromethyl alcohols and ketones: inhibitory potency against human leucocyte elastase, cathepsin G, porcine pancreatic elastase and HIV-1 protease.
    Amour A; Reboud-Ravaux M; de Rosny E; Abouabdellah A; Bégue JP; Bonnet-Delpon D; Le Gall M
    J Pharm Pharmacol; 1998 Jun; 50(6):593-600. PubMed ID: 9680068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid interaction of cathepsin L by Z-Phe-PheCHN12 and Z-Phe-AlaCHN2.
    Kirschke H; Shaw E
    Biochem Biophys Res Commun; 1981 Jul; 101(2):454-8. PubMed ID: 7306089
    [No Abstract]   [Full Text] [Related]  

  • 19. Synthesis of histidine-containing dipeptide affinity-labelling agents. Relative inactivation rates of cathepsins B and L.
    Angliker H; Zumbrunn A; Shaw E
    Int J Pept Protein Res; 1991 Oct; 38(4):346-9. PubMed ID: 1797709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity and reactivity of human granulocyte elastase and cathepsin G, porcine pancreatic elastase, bovine chymotrypsin and trypsin toward inhibition with sulfonyl fluorides.
    Lively MO; Powers JC
    Biochim Biophys Acta; 1978 Jul; 525(1):171-9. PubMed ID: 210810
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.