These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7008837)

  • 1. Cleavage of deoxyribonucleic acid by the 1,10-phenanthroline-cuprous complex. Hydrogen peroxide requirement and primary and secondary structure specificity.
    Marshall LE; Graham DR; Reich KA; Sigman DS
    Biochemistry; 1981 Jan; 20(2):244-50. PubMed ID: 7008837
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxygen-dependent cleavage of DNA by the 1,10-phenanthroline . cuprous complex. Inhibition of Escherichia coli DNA polymerase I.
    Sigman DS; Graham DR; D'Aurora V; Stern AM
    J Biol Chem; 1979 Dec; 254(24):12269-72. PubMed ID: 387784
    [No Abstract]   [Full Text] [Related]  

  • 3. Products of DNA cleavage by the 1,10-phenanthroline-copper complex. Inhibitors of Escherichia coli DNA polymerase I.
    Pope LM; Reich KA; Graham DR; Sigman DS
    J Biol Chem; 1982 Oct; 257(20):12121-8. PubMed ID: 6749854
    [No Abstract]   [Full Text] [Related]  

  • 4. Secondary structure specificity of the nuclease activity of the 1,10-phenanthroline-copper complex.
    Pope LE; Sigman DS
    Proc Natl Acad Sci U S A; 1984 Jan; 81(1):3-7. PubMed ID: 6320169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli polymerase I can use O2-methyldeoxythymidine or O4-methyldeoxythymidine in place of deoxythymidine in primed poly(dA-dT).poly(dA-dT) synthesis.
    Singer B; Sági J; Kuśmierek JT
    Proc Natl Acad Sci U S A; 1983 Aug; 80(16):4884-8. PubMed ID: 6348776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleic acid chemistry of the cuprous complexes of 1,10-phenanthroline and derivatives.
    Sigman DS; Landgraf R; Perrin DM; Pearson L
    Met Ions Biol Syst; 1996; 33():485-513. PubMed ID: 8742853
    [No Abstract]   [Full Text] [Related]  

  • 7. The smaller helical repeat of poly(dA) . poly(dT) relative to DNA may reflect the wedge property of the dA . dT base pair.
    Prunell A; Goulet I; Jacob Y; Goutorbe F
    Eur J Biochem; 1984 Jan; 138(2):253-7. PubMed ID: 6697985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition and use of the unusual X-DNA as a primer-template by Klenow DNA polymerase enzyme.
    Sági J; Vorlícková M; Kypr J; Otvös L
    Biochem Biophys Res Commun; 1989 Jun; 161(3):1204-12. PubMed ID: 2662973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on the unprimed poly (dA-dT) synthesis catalyzed by preparations of E. coli DNA polymerase I.
    Nazarenko IA; Bobko LE; Romashchenko AG; Khripin YL; Salganik RI
    Nucleic Acids Res; 1979 Jun; 6(7):2545-60. PubMed ID: 379822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D(M6ATP) as a probe of the fidelity of base incorporation into polynucleotides by Escherichia coli DNA polymerase I.
    Engel JD; von Hippel PH
    J Biol Chem; 1978 Feb; 253(3):935-9. PubMed ID: 340462
    [No Abstract]   [Full Text] [Related]  

  • 11. Uracil in deoxyribonucleotide polymers reduces their template-primer activity for E. coli DNA polymerase I.
    Vilpo JA; Ridell J
    Nucleic Acids Res; 1983 Jun; 11(11):3753-65. PubMed ID: 6344014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and reaction products of the oxidation of Cu(I)-phenanthroline by H2O2.
    Goldstein S; Czapski G
    J Free Radic Biol Med; 1985; 1(5-6):373-80. PubMed ID: 3837803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclease recognition of an alternating structure in a d(AT)14 plasmid insert.
    Suggs JW; Wagner RW
    Nucleic Acids Res; 1986 May; 14(9):3703-16. PubMed ID: 3012479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Base dynamics of nitroxide-labeled thymidine analogues incorporated into (dA-dT)n by DNA polymerase I from Escherichia coli.
    Pauly GT; Thomas IE; Bobst AM
    Biochemistry; 1987 Nov; 26(23):7304-10. PubMed ID: 2827751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual condensation behavior of poly(dA)-poly(dT).
    Chaires JB
    Biopolymers; 1989 Sep; 28(9):1645-50. PubMed ID: 2775854
    [No Abstract]   [Full Text] [Related]  

  • 16. Influence of nucleotide sequence on dA.dT-specific binding of Netropsin to double stranded DNA.
    Zimmer C; Marck C; Schneider C; Guschlbauer W
    Nucleic Acids Res; 1979 Jun; 6(8):2831-7. PubMed ID: 461206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of a pleiomeric form of poly d(AT):poly d(AT).
    Millane RP; Walker JK; Arnott S; Chandrasekaran R; Birdsall DL; Ratliff RL
    Nucleic Acids Res; 1984 Jul; 12(13):5475-93. PubMed ID: 6462912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1,10-Phenanthroline-cuprous ion complex, a potent inhibitor of DNA and RNA polymerases.
    D'Aurora V; Stern AM; Sigman DS
    Biochem Biophys Res Commun; 1978 Feb; 80(4):1025-32. PubMed ID: 346019
    [No Abstract]   [Full Text] [Related]  

  • 19. Nitroaniline diamine.poly(dA-dT) complexes: 1H and 19F NMR parameters for full intercalation of aromatic rings into DNA.
    Patel DJ; Gabbay EJ
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1351-5. PubMed ID: 6940162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular oxidative cleavage of DNA in Escherichia coli by the copper-1,10-phenanthroline complex.
    Lickl E; Chao SC; Chang WC
    Free Radic Res Commun; 1989; 8(1):37-45. PubMed ID: 2555284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.