These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7008872)

  • 1. Intracellular red-ox steady states as basis for cell characterization by flow cytofluorometry.
    Thorell B
    Blood Cells; 1980; 6(4):745-51. PubMed ID: 7008872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New metabolic parameters for the characterization of cells.
    Kohen E; Kohen C; Hirschberg JG; Wouters AW; Bartick PR; Westerhoff HV; Charyulu KK; Schachtschabel DO
    Blood Cells; 1980; 6(4):753-65. PubMed ID: 7008873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometric analysis of cellular endogenous fluorescence simultaneously with emission from exogenous fluorochromes, light scatter and absorption.
    Thorell B
    Cytometry; 1981 Jul; 2(1):39-43. PubMed ID: 7273975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow-cytometric monitoring of intracellular flavins simultaneously with NAD(P)H levels.
    Thorell B
    Cytometry; 1983 Jul; 4(1):61-5. PubMed ID: 6617395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [In vivo action of glycolate on the state of oxidation reduction of NAD and NADP coenzymes in rat liver].
    Thuret F; Lamothe C; Laborit H
    Agressologie; 1971; 12(3):183-5. PubMed ID: 4399329
    [No Abstract]   [Full Text] [Related]  

  • 6. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions.
    Canelas AB; van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 2008 Jul; 100(4):734-43. PubMed ID: 18383140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autofluorescence properties of rat liver under hypermetabolic conditions.
    Croce AC; De Simone U; Vairetti M; Ferrigno A; Bottiroli G
    Photochem Photobiol Sci; 2007 Nov; 6(11):1202-9. PubMed ID: 17973053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyridine nucleotides and rate control.
    Krebs HA
    Symp Soc Exp Biol; 1973; 27():299-318. PubMed ID: 4148884
    [No Abstract]   [Full Text] [Related]  

  • 9. Autofluorescence properties of isolated rat hepatocytes under different metabolic conditions.
    Croce AC; Ferrigno A; Vairetti M; Bertone R; Freitas I; Bottiroli G
    Photochem Photobiol Sci; 2004 Oct; 3(10):920-6. PubMed ID: 15480482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant energy transfer from proteins to pyridine nucleotides in mitochondria.
    Vekshin NL
    Biochemistry (Mosc); 1998 Sep; 63(9):1110-3. PubMed ID: 9795284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Change in the content of the nicotinamide coenzymes in the liver of albino rats under the effect of thiophosamide].
    Bidenko ED
    Ukr Biokhim Zh; 1968; 40(5):436-9. PubMed ID: 4387345
    [No Abstract]   [Full Text] [Related]  

  • 13. Study the effect of Vitamin K on intracellular NAD level in yeast by fluorescence spectrum.
    Yahong C; Ruxiu C; Ke Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 May; 67(1):235-9. PubMed ID: 17254841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence studies of NAD(P)H binding in intact cells.
    Galeotti T; Van Rossum GD; Mayer D; Chance B
    Hoppe Seylers Z Physiol Chem; 1970 Mar; 351(3):274-5. PubMed ID: 4392985
    [No Abstract]   [Full Text] [Related]  

  • 15. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The content of pyridine coenzymes in the liver of the adult and old rats in stress].
    Rud'ko NP; Davydov VV
    Patol Fiziol Eksp Ter; 2004; (2):22-3. PubMed ID: 15208925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes.
    Cui K; Ma Q; Lu AY; Yang CS
    Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic role of cytoplasmic isozymes of 5,10-methylenetetrahydrofolate dehydrogenase in Saccharomyces cerevisiae.
    West MG; Horne DW; Appling DR
    Biochemistry; 1996 Mar; 35(9):3122-32. PubMed ID: 8608153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of orotic acid on pyridine coenzyme levels in rat liver tissue].
    Shushevich SI; Khalmuradov AG; Shestopalova VM
    Vopr Med Khim; 1967; 13(2):136-9. PubMed ID: 4386151
    [No Abstract]   [Full Text] [Related]  

  • 20. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line.
    Wise DD; Shear JB
    Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.