These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 7009556)

  • 21. Inactivation of the uptake hydrogenase in the purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS enables a biological water-gas shift platform for H
    Eckert CA; Freed E; Wawrousek K; Smolinski S; Yu J; Maness PC
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):993-1002. PubMed ID: 30968274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures.
    Hillmer P; Gest H
    J Bacteriol; 1977 Feb; 129(2):724-31. PubMed ID: 838685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the hydrogen-deuterium exchange activities of the energy-transducing HupSL hydrogenase and H(2)-signaling HupUV hydrogenase in Rhodobacter capsulatus.
    Vignais PM; Dimon B; Zorin NA; Tomiyama M; Colbeau A
    J Bacteriol; 2000 Nov; 182(21):5997-6004. PubMed ID: 11029418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of Energy and Electron Availability on
    Zheng Y; Harwood CS
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-dependent reduction of nicotinamide adenine dinucleotide phosphate by chromatophores of Rhodopseudomonas spheroides.
    Orlando JA
    Arch Biochem Biophys; 1968 Mar; 124(1):413-7. PubMed ID: 4385595
    [No Abstract]   [Full Text] [Related]  

  • 26. Modification by immobilization of the microenvironment of chromatophores of Rhodopseudomonas capsulata. The influence on light-induced ADP phosphorylation coupled to cyclic electron transport.
    Garde VL; Gellf G; Thomas D
    Eur J Biochem; 1981 May; 116(2):337-9. PubMed ID: 7250130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secondary electron transfer in chromatophores of Rhodopseudomonas capsulata A1a pho. Binary out-of-phase oscillations in ubisemiauinone formation and cytochrome b50 reduction with consective light flashes.
    Bowyer JR; Tierney GV; Crofts AR
    FEBS Lett; 1979 May; 101(1):201-6. PubMed ID: 446736
    [No Abstract]   [Full Text] [Related]  

  • 28. Mechanism of nitrogenase switch-off by oxygen.
    Goldberg I; Nadler V; Hochman A
    J Bacteriol; 1987 Feb; 169(2):874-9. PubMed ID: 3542974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of some physiological factors on nitrogenase activity and nitrogenase mediated hydrogen evolution by mixed microbial culture.
    Kumar A; Jain SR; Kalia VC; Joshi AP
    Biochem Mol Biol Int; 1998 Jun; 45(2):245-53. PubMed ID: 9678245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ characterisation of photosynthetic electron transport in Rhodopseudomonas capsulata.
    Evans EH; Crofts AR
    Biochim Biophys Acta; 1974 Jul; 357(1):89-102. PubMed ID: 4370093
    [No Abstract]   [Full Text] [Related]  

  • 31. The hydrogen cycle in nitrogen-fixing Azotobacter chroococcum.
    Walker CC; Yates MG
    Biochimie; 1978; 60(3):225-31. PubMed ID: 667178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogenase activity in Azospirillum brasilense is inhibited by nitrite, nitric oxide, carbon monoxide, and acetylene.
    Tibelius KH; Knowles R
    J Bacteriol; 1984 Oct; 160(1):103-6. PubMed ID: 6384189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibitor sensitivity of light-dependent oxygen reduction in chromatophores from wild-type and an oxidase-deficient mutant of Rhodopseudomonas capsulata.
    Bittan R; Hochman A; Yagil E; Carmeli C
    Arch Biochem Biophys; 1981 Jun; 209(1):276-83. PubMed ID: 7283441
    [No Abstract]   [Full Text] [Related]  

  • 35. Studies on the mechanism of NAD-photoreduction by chromatophores of the facultative phototroph, Rhodopseudomonas capsulata.
    Klemme JH
    Z Naturforsch B; 1969 Jan; 24(1):67-76. PubMed ID: 4388881
    [No Abstract]   [Full Text] [Related]  

  • 36. Cytochrome c2--reaction centre coupling in chromatophores of Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata.
    Bowyer JR; Tierney GV; Crofts AR
    FEBS Lett; 1979 May; 101(1):207-12. PubMed ID: 221250
    [No Abstract]   [Full Text] [Related]  

  • 37. Nucleotide exchange in membrane vesicles from the photosynthetic bacterium Rhodopseudomonas capsulata.
    Hochman A; Bittan R; Carmeli C
    Arch Biochem Biophys; 1981 Oct; 211(1):413-8. PubMed ID: 7305378
    [No Abstract]   [Full Text] [Related]  

  • 38. The effect of dibromothymoquinone on respiratory and photosynthetic electron transport in Rhodopseudomonas capsulata chromatophores.
    Evans EH; Gooding DA
    Arch Microbiol; 1976 Dec; 111(1-2):171-4. PubMed ID: 189722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uptake hydrogenase activity and ATP formation in Rhizobium leguminosarum bacteroids.
    Nelson LM; Salminen SO
    J Bacteriol; 1982 Aug; 151(2):989-95. PubMed ID: 7047503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Respiratory control and the basis of light-induced inhibition of respiration in chromatophores from Rhodopseudomonas capsulata.
    McCarthy JE; Ferguson SJ
    Biochem Biophys Res Commun; 1982 Aug; 107(4):1406-11. PubMed ID: 7138547
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.