These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 7009556)

  • 41. Cyclic photophosphorylation by chromatophores of the facultative phototroph, Rhodopseudomonas capsulata.
    Klemme JH; Schlegel HG
    Arch Mikrobiol; 1968; 63(2):154-69. PubMed ID: 5703717
    [No Abstract]   [Full Text] [Related]  

  • 42. Effect of light nitrogenase function and synthesis in Rhodopseudomonas capsulata.
    Meyer J; Kelley BC; Vignais PM
    J Bacteriol; 1978 Oct; 136(1):201-8. PubMed ID: 711666
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of the oxygen tolerance of a hydrogenase linked to a carbon monoxide oxidation pathway in Rubrivivax gelatinosus.
    Maness PC; Smolinski S; Dillon AC; Heben MJ; Weaver PF
    Appl Environ Microbiol; 2002 Jun; 68(6):2633-6. PubMed ID: 12039713
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The stimulation of photophosphorylation and ATPase by artificial redox mediators in chromatophores of Rhodopseudomonas capsulata at different redox potentials.
    Baccarini-Melandri A; Melandri BA; Hauska G
    J Bioenerg Biomembr; 1979 Apr; 11(1-2):1-16. PubMed ID: 162342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetic mechanism of the hydrogen-oxidizing hydrogenase from soybean nodule bacteroids.
    Arp DJ; Burris RH
    Biochemistry; 1981 Apr; 20(8):2234-40. PubMed ID: 7016176
    [TBL] [Abstract][Full Text] [Related]  

  • 46. HupUV proteins of Rhodobacter capsulatus can bind H2: evidence from the H-D exchange reaction.
    Vignais PM; Dimon B; Zorin NA; Colbeau A; Elsen S
    J Bacteriol; 1997 Jan; 179(1):290-2. PubMed ID: 8982013
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photosynthetic control and estimation of the optimal ATP: electron stoichiometry during flash activation of chromatophores from Rhodopseudomonas capsulata.
    Jackson JB; Venturoli G; Baccarini-Melandri A; Melandri BA
    Biochim Biophys Acta; 1981 Jun; 636(1):1-8. PubMed ID: 7284340
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Properties of two forms of ferredoxin from Rhodopseudomonas capsulata].
    Iakunin AF; Gogotov IN
    Biokhimiia; 1983 May; 48(5):811-7. PubMed ID: 6575832
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of hydrogenase in Rhizobium japonicum.
    Maier RJ; Hanus FJ; Evans HJ
    J Bacteriol; 1979 Feb; 137(2):825-9. PubMed ID: 422513
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Klebsiella pneumoniae nitrogenase. Mechanism of acetylene reduction and its inhibition by carbon monoxide.
    Lowe DJ; Fisher K; Thorneley RN
    Biochem J; 1990 Dec; 272(3):621-5. PubMed ID: 2268290
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nitrogen fixation and ammonia switch-off in the photosynthetic bacterium Rhodopseudomonas viridis.
    Howard KS; Hales BJ; Socolofsky MD
    J Bacteriol; 1983 Jul; 155(1):107-12. PubMed ID: 6305906
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Generation of membrane potential during photosynthetic electron flow in chromatophores from Rhodopseudomonas capsulata.
    Packham NK; Greenrod JA; Jackson JB
    Biochim Biophys Acta; 1980 Aug; 592(1):130-42. PubMed ID: 7397136
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex.
    Cournac L; Guedeney G; Peltier G; Vignais PM
    J Bacteriol; 2004 Mar; 186(6):1737-46. PubMed ID: 14996805
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the extent of localization of the energized membrane state in chromatophores from Rhodopseudomonas capsulata N22.
    Hitchens GD; Kell DB
    Biochem J; 1982 Aug; 206(2):351-7. PubMed ID: 7150247
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata.
    McEwan AG; Greenfield AJ; Wetzstein HG; Jackson JB; Ferguson SJ
    J Bacteriol; 1985 Nov; 164(2):823-30. PubMed ID: 2997133
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioenergetics of lactate vs. acetate outside TCA enhanced the hydrogen evolution levels in two newly isolated strains of the photosynthetic bacterium Rhodopseudomonas.
    Danial AW; Abdel Wahab AM; Arafat HH; Abdel-Basset R
    Z Naturforsch C J Biosci; 2017 Mar; 72(3-4):99-105. PubMed ID: 28121619
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Divalent cation transport systems of Rhodopseudomonas capsulata.
    Jasper P; Silver S
    J Bacteriol; 1978 Mar; 133(3):1323-8. PubMed ID: 641011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rhodobacter capsulatus HypF is involved in regulation of hydrogenase synthesis through the HupUV proteins.
    Colbeau A; Elsen S; Tomiyama M; Zorin NA; Dimon B; Vignais PM
    Eur J Biochem; 1998 Jan; 251(1-2):65-71. PubMed ID: 9492269
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris.
    Huang JJ; Heiniger EK; McKinlay JB; Harwood CS
    Appl Environ Microbiol; 2010 Dec; 76(23):7717-22. PubMed ID: 20889777
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mass-spectrometric studies of the interrelations among hydrogenase, carbon monoxide dehydrogenase, and methane-forming activities in pure and mixed cultures of Desulfovibrio vulgaris, Desulfovibrio desulfuricans, and Methanosarcina barkeri.
    Rajagopal BS; Lespinat PA; Fauque G; LeGall J; Berlier YM
    Appl Environ Microbiol; 1989 Sep; 55(9):2123-9. PubMed ID: 2508553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.