These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane. Dilworth MJ; Eady RR; Eldridge ME Biochem J; 1988 Feb; 249(3):745-51. PubMed ID: 3162672 [TBL] [Abstract][Full Text] [Related]
63. H2 consumption by Escherichia coli coupled via hydrogenase 1 or hydrogenase 2 to different terminal electron acceptors. Laurinavichene TV; Tsygankov AA FEMS Microbiol Lett; 2001 Aug; 202(1):121-4. PubMed ID: 11506918 [TBL] [Abstract][Full Text] [Related]
64. Inhibition of nitrogenase activity by metronidazole in rhodopseudomonas capsulata. Kelley BC; Nicholas DJ Arch Microbiol; 1981 Jul; 129(5):344-8. PubMed ID: 6116482 [TBL] [Abstract][Full Text] [Related]
66. Nitrogenase reactivity: effects of pH on substrate reduction and CO inhibition. Pham DN; Burgess BK Biochemistry; 1993 Dec; 32(49):13725-31. PubMed ID: 8257707 [TBL] [Abstract][Full Text] [Related]
67. [Reactions of the hydrogenase from Rhodopseudomonas capsulata in the particle-bound and dissolved state]. Klemme JH Z Naturforsch B; 1969 May; 24(5):603-12. PubMed ID: 4389798 [No Abstract] [Full Text] [Related]
68. Nucleotide translocation across the cytoplasmic membrane in the photosynthetic bacterium Rhodopseudomonas capsulata. Hochman A; Bittan R; Carmeli C FEBS Lett; 1978 May; 89(1):21-5. PubMed ID: 149026 [No Abstract] [Full Text] [Related]
69. Light-induced electron transport pathways in membrane preparations from Rhodopseudomonas capsulata. Hochman A; Gen-Hayyim G; Carmeli C Arch Biochem Biophys; 1977 Dec; 184(2):416-22. PubMed ID: 596882 [No Abstract] [Full Text] [Related]
70. Nitrogenase from Rhodospirillum rubrum. Relation between 'switch-off' effect and the membrane component. Hydrogen production and acetylene reduction with different nitrogenase component ratios. Nordlund S; Eriksson U Biochim Biophys Acta; 1979 Sep; 547(3):429-37. PubMed ID: 114217 [TBL] [Abstract][Full Text] [Related]
71. Anaerobic and aerobic hydrogen gas formation by the blue-green alga Anabaena cylindrica. Daday A; Platz RA; Smith GD Appl Environ Microbiol; 1977 Nov; 34(5):478-83. PubMed ID: 412467 [TBL] [Abstract][Full Text] [Related]
72. Effect of high pN2 and high pD2 on NH3 production, H2 evolution, and HD formation by nitrogenases. Jensen BB; Burris RH Biochemistry; 1985 Feb; 24(5):1141-7. PubMed ID: 3913463 [TBL] [Abstract][Full Text] [Related]
73. [Photoreduction of pyridine nucleotide by chromatophores from Rhodopseudomonas capsulata with molecular hydrogen]. Klemme JH; Schlegel HG Arch Mikrobiol; 1967; 59(1):185-96. PubMed ID: 4301386 [No Abstract] [Full Text] [Related]
74. Studies on kinetics of substrate utilization of hydrogen production from wastewater with immobilized cells of photosynthetic bacteria. Xu X; Yu X; Zheng P; Chen W; Feng X Chin J Biotechnol; 1995; 11(1):69-77. PubMed ID: 7548773 [TBL] [Abstract][Full Text] [Related]
75. The kinetics of methyl viologen oxidation and reduction by the hydrogenase from Clostridium pasteurianum. Erbes DL; Burris RH Biochim Biophys Acta; 1978 Jul; 525(1):45-54. PubMed ID: 28770 [TBL] [Abstract][Full Text] [Related]
76. Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris. Rey FE; Oda Y; Harwood CS J Bacteriol; 2006 Sep; 188(17):6143-52. PubMed ID: 16923881 [TBL] [Abstract][Full Text] [Related]
77. Hydrogenase activity in nitrogen-fixing methane-oxidizing bacteria. Bont JA Antonie Van Leeuwenhoek; 1976; 42(3):255-9. PubMed ID: 825038 [TBL] [Abstract][Full Text] [Related]
78. Interactions among substrates and inhibitors of nitrogenase. Rivera-Ortiz JM; Burris RH J Bacteriol; 1975 Aug; 123(2):537-45. PubMed ID: 1150625 [TBL] [Abstract][Full Text] [Related]
79. Nitrogenase reactivity: insight into the nitrogen-fixing process through hydrogen-inhibition and HD-forming reactions. Burgess BK; Wherland S; Newton WE; Stiefel EI Biochemistry; 1981 Sep; 20(18):5140-6. PubMed ID: 6945872 [TBL] [Abstract][Full Text] [Related]
80. Changes in the acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions. Russell NJ; Harwood JL Biochem J; 1979 Aug; 181(2):339-45. PubMed ID: 115463 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]