These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7009563)

  • 41. Large-scale preparation of fully deuterated cell components. Ribosomes from Escherichia coli with high biological activity.
    Vanatalu K; Paalme T; Vilu R; Burkhardt N; Jünemann R; May R; Rühl M; Wadzack J; Nierhaus KH
    Eur J Biochem; 1993 Aug; 216(1):315-21. PubMed ID: 8365413
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions.
    Yang J; Wang Z; Zhu N; Wang B; Chen T; Zhao X
    Microbiol Res; 2014; 169(5-6):432-40. PubMed ID: 24103861
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model.
    Pramanik J; Keasling JD
    Biotechnol Bioeng; 1998 Oct; 60(2):230-8. PubMed ID: 10099424
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Function of energy-dependent transhydrogenase in Escherichia coli.
    Bragg PD; Davies PL; Hou C
    Biochem Biophys Res Commun; 1972 Jun; 47(5):1248-55. PubMed ID: 4337747
    [No Abstract]   [Full Text] [Related]  

  • 45. [Construction of engineered Escherichia coli for aerobic succinate production].
    Kang Z; Geng Y; Zhang Y; Qi Q
    Sheng Wu Gong Cheng Xue Bao; 2008 Dec; 24(12):2081-5. PubMed ID: 19306579
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli.
    Vemuri GN; Eiteman MA; Altman E
    Appl Environ Microbiol; 2002 Apr; 68(4):1715-27. PubMed ID: 11916689
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effects of fructose and maltose as aerobic carbon sources on subsequently anaerobic fermentation by Escherichia coli NZN111].
    Wu H; Li Z; Ye Q
    Sheng Wu Gong Cheng Xue Bao; 2011 Sep; 27(9):1299-308. PubMed ID: 22117513
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The growth rate control in Escherichia coli at near to maximum growth rates: the A-stat approach.
    Paalme T; Elken R; Kahru A; Vanatalu K; Vilu R
    Antonie Van Leeuwenhoek; 1997 Mar; 71(3):217-30. PubMed ID: 9111915
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vitamin B 12 and methionine synthesis in Escherichia coli.
    Dawes J; Foster MA
    Biochim Biophys Acta; 1971 Jun; 237(3):455-64. PubMed ID: 4940764
    [No Abstract]   [Full Text] [Related]  

  • 50. The regulatory effects of growth rate and cyclic AMP levels on carbon catabolism and respiration in Escherichia coli K-12.
    Wright LF; Milne DP; Knowles CJ
    Biochim Biophys Acta; 1979 Feb; 583(1):73-80. PubMed ID: 217449
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production of itaconic acid in Escherichia coli expressing recombinant α-amylase using starch as substrate.
    Okamoto S; Chin T; Nagata K; Takahashi T; Ohara H; Aso Y
    J Biosci Bioeng; 2015 May; 119(5):548-53. PubMed ID: 25468427
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of alternative membrane-bound redox carriers during aerobic growth of Escherichia coli in the presence of potassium cyanide.
    Ashcroft JR; Haddock BA
    Biochem J; 1975 May; 148(2):349-52. PubMed ID: 1098659
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Changes in the energy status of synchronous Escherichia coli cultures during aerobic-anaerobic transitions].
    Tkachenko AG; Chudinov AA; Kolbina EA
    Mikrobiologiia; 1988; 57(1):65-72. PubMed ID: 3045503
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli.
    Li Y; Li M; Zhang X; Yang P; Liang Q; Qi Q
    Bioresour Technol; 2013 Dec; 149():333-40. PubMed ID: 24125798
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions.
    Vemuri GN; Eiteman MA; Altman E
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):325-32. PubMed ID: 12032805
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energization of energy-dependent transhydrogenase of Escherichia coli at a second site of energy conservation.
    Bragg PD; Hou C
    Arch Biochem Biophys; 1974 Aug; 163(2):614-6. PubMed ID: 4153348
    [No Abstract]   [Full Text] [Related]  

  • 57. Aerobic respiration in mutants of Escherichia coli accumulating quinone analogues of ubiquinone.
    Wallace BJ; Young IG
    Biochim Biophys Acta; 1977 Jul; 461(1):75-83. PubMed ID: 195601
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microcalorimetric study of the binding of thiodigalactoside to the lactose permease M protein of Escherichia coli.
    Belaich A; Simonpietri P; Belaich JP
    J Biol Chem; 1976 Nov; 251(21):6735-8. PubMed ID: 789376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of aerobiosis and nitrogen source on the proton motive force in growing Escherichia coli and Klebsiella pneumoniae cells.
    Kashket ER
    J Bacteriol; 1981 Apr; 146(1):377-84. PubMed ID: 6260744
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chip calorimetry for the monitoring of whole cell biotransformation.
    Maskow T; Lerchner J; Peitzsch M; Harms H; Wolf G
    J Biotechnol; 2006 Apr; 122(4):431-42. PubMed ID: 16309773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.