These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 7009570)
1. Molecular cloning of TOL genes xylB and xylE in Escherichia coli. Inouye S; Nakazawa A; Nakazawa T J Bacteriol; 1981 Mar; 145(3):1137-43. PubMed ID: 7009570 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning of the xylL-xylE region from the P. putida TOL plasmid, pDK1. Voss JA; Khedairy H; Baker RF; Benjamin RC SAAS Bull Biochem Biotechnol; 1990 Jan; 3():54-7. PubMed ID: 1366507 [TBL] [Abstract][Full Text] [Related]
3. Evolutionary conservation of genes coding for meta pathway enzymes within TOL plasmids pWW0 and pWW53. Keil H; Keil S; Pickup RW; Williams PA J Bacteriol; 1985 Nov; 164(2):887-95. PubMed ID: 2997136 [TBL] [Abstract][Full Text] [Related]
4. Molecular cloning of regulatory gene xylR and operator-promoter regions of the xylABC and xylDEGF operons of the TOL plasmid. Inouye S; Nakazawa A; Nakazawa T J Bacteriol; 1983 Sep; 155(3):1192-9. PubMed ID: 6885718 [TBL] [Abstract][Full Text] [Related]
5. Physical and functional mapping of RP4-TOL plasmid recombinants: analysis of insertion and deletion mutants. Nakazawa T; Inouye S; Nakazawa A J Bacteriol; 1980 Oct; 144(1):222-31. PubMed ID: 6252192 [TBL] [Abstract][Full Text] [Related]
6. Naturally occurring TOL plasmids in Pseudomonas strains carry either two homologous or two nonhomologous catechol 2,3-oxygenase genes. Chatfield LK; Williams PA J Bacteriol; 1986 Nov; 168(2):878-85. PubMed ID: 3023288 [TBL] [Abstract][Full Text] [Related]
7. TOL plasmid pWW15 contains two nonhomologous, independently regulated catechol 2,3-oxygenase genes. Keil H; Lebens MR; Williams PA J Bacteriol; 1985 Jul; 163(1):248-55. PubMed ID: 4008443 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Pseudomonas putida mutants unable to catabolize benzoate: cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal DNA fragment able to substitute for xylS in activation of the TOL lower-pathway promoter. Jeffrey WH; Cuskey SM; Chapman PJ; Resnick S; Olsen RH J Bacteriol; 1992 Aug; 174(15):4986-96. PubMed ID: 1629155 [TBL] [Abstract][Full Text] [Related]
9. Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Franklin FC; Bagdasarian M; Bagdasarian MM; Timmis KN Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7458-62. PubMed ID: 6950388 [TBL] [Abstract][Full Text] [Related]
10. Relative expression and stability of a chromosomally integrated and plasmid-borne marker gene fusion in environmentally competent bacteria. Abebe HM; Seidler RJ; Lindow SE; Short KA; Clark E; King RJ Curr Microbiol; 1997 Feb; 34(2):71-8. PubMed ID: 9003582 [TBL] [Abstract][Full Text] [Related]
11. Nucleotide sequence of xylE from the TOL pDK1 plasmid and structural comparison with isofunctional catechol-2,3-dioxygenase genes from TOL, pWW0 and NAH7. Benjamin RC; Voss JA; Kunz DA J Bacteriol; 1991 Apr; 173(8):2724-8. PubMed ID: 1672868 [TBL] [Abstract][Full Text] [Related]
12. Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Zukowski MM; Gaffney DF; Speck D; Kauffmann M; Findeli A; Wisecup A; Lecocq JP Proc Natl Acad Sci U S A; 1983 Feb; 80(4):1101-5. PubMed ID: 6405380 [TBL] [Abstract][Full Text] [Related]
13. Duplication of both xyl catabolic operons on TOL plasmid pWW15. O'Donnell KJ; Williams PA J Gen Microbiol; 1991 Dec; 137(12):2831-8. PubMed ID: 1791436 [TBL] [Abstract][Full Text] [Related]
14. Substrate specificity differences between two catechol 2,3-dioxygenases encoded by the TOL and NAH plasmids from Pseudomonas putida. Cerdan P; Rekik M; Harayama S Eur J Biochem; 1995 Apr; 229(1):113-8. PubMed ID: 7744021 [TBL] [Abstract][Full Text] [Related]
15. Benzoate-dependent induction from the OP2 operator-promoter region of the TOL plasmid pWWO in the absence of known plasmid regulatory genes. Cuskey SM; Sprenkle AB J Bacteriol; 1988 Aug; 170(8):3742-6. PubMed ID: 2841300 [TBL] [Abstract][Full Text] [Related]
16. Localization and functional analysis of transposon mutations in regulatory genes of the TOL catabolic pathway. Franklin FC; Lehrbach PR; Lurz R; Rueckert B; Bagdasarian M; Timmis KN J Bacteriol; 1983 May; 154(2):676-85. PubMed ID: 6188746 [TBL] [Abstract][Full Text] [Related]
17. A novel -2Fe-2S- ferredoxin from Pseudomonas putida mt2 promotes the reductive reactivation of catechol 2,3-dioxygenase. Hugo N; Armengaud J; Gaillard J; Timmis KN; Jouanneau Y J Biol Chem; 1998 Apr; 273(16):9622-9. PubMed ID: 9545294 [TBL] [Abstract][Full Text] [Related]
18. Overproduction of the xylS gene product and activation of the xylDLEGF operon on the TOL plasmid. Inouye S; Nakazawa A; Nakazawa T J Bacteriol; 1987 Aug; 169(8):3587-92. PubMed ID: 3611023 [TBL] [Abstract][Full Text] [Related]
20. Gene order of the TOL catabolic plasmid upper pathway operon and oxidation of both toluene and benzyl alcohol by the xylA product. Harayama S; Leppik RA; Rekik M; Mermod N; Lehrbach PR; Reineke W; Timmis KN J Bacteriol; 1986 Aug; 167(2):455-61. PubMed ID: 3015870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]