These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 7009625)

  • 1. The use of fluorescent antimyosin and DNA labeling for the estimation of the myoblast and myocyte population of primary rat heart cell cultures.
    Masse MJ; Harary I
    J Cell Physiol; 1981 Jan; 106(1):165-72. PubMed ID: 7009625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of 5-bromodeoxyuridine and irradiation for the estimation of the myoblast and myocyte content of primary rat heart cell cultures.
    Masse MJ; Harary I
    J Cell Physiol; 1980 Nov; 105(2):197-207. PubMed ID: 6450770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of heart cells in culture: studies using an affinity purified antibody to a myosin light chain.
    Klein I; Daood M; Whiteside T
    J Cell Physiol; 1985 Jul; 124(1):49-53. PubMed ID: 3900092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of proliferating cell nuclear antigen in the developing and mature rat heart cell.
    Marino TA; Cao W; Lee J; Courtney R
    Anat Rec; 1996 Aug; 245(4):677-84. PubMed ID: 8837726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2.
    Joyce NC; Harris DL; Mello DM
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2152-9. PubMed ID: 12091410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FGF-2-induced imbalance in early embryonic heart cell proliferation: a potential cause of late cardiovascular anomalies.
    Franciosi JP; Bolender DL; Lough J; Kolesari GL
    Teratology; 2000 Oct; 62(4):189-94. PubMed ID: 10992260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Down-regulation of the IGF-1 system parallels the attenuation in the proliferative capacity of rat ventricular myocytes during postnatal development.
    Cheng W; Reiss K; Kajstura J; Kowal K; Quaini F; Anversa P
    Lab Invest; 1995 Jun; 72(6):646-55. PubMed ID: 7783422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of post-translationally modified microtubule populations during neonatal cardiac development.
    Webster DR
    J Mol Cell Cardiol; 1997 Jun; 29(6):1747-61. PubMed ID: 9220360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmed cell death and expression of the protooncogene bcl-2 in myocytes during postnatal maturation of the heart.
    Kajstura J; Mansukhani M; Cheng W; Reiss K; Krajewski S; Reed JC; Quaini F; Sonnenblick EH; Anversa P
    Exp Cell Res; 1995 Jul; 219(1):110-21. PubMed ID: 7628527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development.
    Li F; Wang X; Capasso JM; Gerdes AM
    J Mol Cell Cardiol; 1996 Aug; 28(8):1737-46. PubMed ID: 8877783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competence of embryonic mammalian heart cells in culture: DNA synthesis, mitosis and differentiation.
    Nag AC; Crandell TF; Cheng M
    Cytobios; 1981; 30(119):189-208. PubMed ID: 7285631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apoptosis and DNA fragmentation in the bulbus cordis of the developing rat heart.
    Takeda K; Yu ZX; Nishikawa T; Tanaka M; Hosoda S; Ferrans VJ; Kasajima T
    J Mol Cell Cardiol; 1996 Jan; 28(1):209-15. PubMed ID: 8745228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell cycle-related changes in the voltage-gated Ca2+ currents in cultured newborn rat ventricular myocytes.
    Guo W; Kamiya K; Kodama I; Toyama J
    J Mol Cell Cardiol; 1998 Jun; 30(6):1095-103. PubMed ID: 9689584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coaggregation and formation of a joint myocardial tissue by embryonic mammalian and avian heart cells.
    Nag AC; Cheng M; Healy CJ
    J Embryol Exp Morphol; 1980 Oct; 59():263-79. PubMed ID: 7217871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of growth of newborn rat heart cell cultures: influence of cell density, pH, and a platelet-derived factor.
    Frelin C
    Adv Myocardiol; 1980; 1():477-85. PubMed ID: 7394343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triiodothyronine expands the lactotroph and maintains the lactosomatotroph population, whereas thyrotrophin-releasing hormone augments thyrotroph abundance in aggregate cell cultures of postnatal rat pituitary gland.
    Pals K; Vankelecom H; Denef C
    J Neuroendocrinol; 2006 Mar; 18(3):203-16. PubMed ID: 16454804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunofluorescent studies on titin and myosin in developing hearts of normal and cardiac mutant axolotls.
    Erginel-Unaltuna N; Lemanski LF
    J Morphol; 1994 Oct; 222(1):19-32. PubMed ID: 7966344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibiting the differentiation of myocardiocytes by hyaluronic acid.
    Iocono JA; Bisignani GJ; Krummel TM; Ehrlich HP
    J Surg Res; 1998 May; 76(2):111-6. PubMed ID: 9698509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in the structural characteristics of adult guinea pig and rat cardiomyocytes during their adaptation and maintenance in long-term cultures: confocal microscopy study.
    Horackova M; Byczko Z
    Exp Cell Res; 1997 Nov; 237(1):158-75. PubMed ID: 9417879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Proliferation of the rat myocardium injured in the early stages of postnatal ontogeny].
    Bol'shakova GB
    Biull Eksp Biol Med; 1980 Feb; 89(2):234-6. PubMed ID: 7370433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.