These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 7009875)
1. The beginning of fluctuation analysis of epithelial ion transport. Lindemann B J Membr Biol; 1980; 54(1):1-11. PubMed ID: 7009875 [No Abstract] [Full Text] [Related]
2. Electrical characteristics of the apical and basal-lateral membranes in the turtle bladder epithelial cell layer. Nagel W; Durham JH; Brodsky WA Biochim Biophys Acta; 1981 Aug; 646(1):77-87. PubMed ID: 7272304 [No Abstract] [Full Text] [Related]
3. Cellular and shunt pathways in toad urinary bladder: control mechanisms. Finn AL; Davis CW; Narvarte J Soc Gen Physiol Ser; 1981; 36():61-78. PubMed ID: 7280744 [No Abstract] [Full Text] [Related]
4. Computer simulation of sodium fluxes in frog skin epidermis. Huf EG; Howell JR J Membr Biol; 1974; 15(1):47-66. PubMed ID: 4837990 [No Abstract] [Full Text] [Related]
6. Effects of active sodium transport on current-voltage relationship of toad bladder. Civan MM Am J Physiol; 1970 Jul; 219(1):234-45. PubMed ID: 5424849 [No Abstract] [Full Text] [Related]
7. Delayed voltage responses to fast changes of (Na) 0 at the outer surface of frog skin epithelium. Fuchs W; Gebhardt U; Lindemann B Biomembranes; 1972; 3():483-98. PubMed ID: 4542294 [No Abstract] [Full Text] [Related]
8. Impedance analysis in epithelia. Clausen C; Wills NK Soc Gen Physiol Ser; 1981; 36():79-92. PubMed ID: 6269230 [No Abstract] [Full Text] [Related]
9. Application of membrane potential equations to tight epithelia. Gordon LG; Macknight AD J Membr Biol; 1991 Mar; 120(2):155-63. PubMed ID: 2072386 [TBL] [Abstract][Full Text] [Related]
10. Membrane potentials, resistances, and conductances of toad bladder during Na+ - H+ transport and H+ transport. Ramsay AG Proc Soc Exp Biol Med; 1982 May; 170(1):94-102. PubMed ID: 6281798 [No Abstract] [Full Text] [Related]
11. Passive ion fluxes across toad bladder. Chen JS; Walser M J Membr Biol; 1974; 18(3-4):365-78. PubMed ID: 4214037 [No Abstract] [Full Text] [Related]
12. Action of ouabain on sodium transport in toad urinary bladder, Evidence for two pathways for sodium entry. Finn AL J Gen Physiol; 1975 Apr; 65(4):503-14. PubMed ID: 807674 [TBL] [Abstract][Full Text] [Related]
13. Interaction between apical and basolateral membranes during sodium transport across tight epithelia. Lewis SA; Wills NK Soc Gen Physiol Ser; 1981; 36():93-107. PubMed ID: 7280745 [No Abstract] [Full Text] [Related]
14. Effect of furosemide on sodium transport and metabolism in toad bladder. Sullivan LP; Tucker JM; Scherbenske MJ Am J Physiol; 1971 May; 220(5):1316-24. PubMed ID: 5574647 [No Abstract] [Full Text] [Related]
15. Electrical properties of amphibian urinary bladder epithelia. IV. The current-voltage relationship of the sodium channels in the apical cell membrane. Frömter E; Higgins JT; Gebler B Soc Gen Physiol Ser; 1981; 36():31-45. PubMed ID: 6269228 [No Abstract] [Full Text] [Related]
16. The effects of epidermal hydration and sodium reabsorption on palmar skin potential. Fowles DC; Venables PH Psychol Bull; 1970 May; 73(5):363-78. PubMed ID: 5469419 [No Abstract] [Full Text] [Related]
17. Basolateral membrane potential of a tight epithelium: ionic diffusion and electrogenic pumps. Lewis SA; Wills NK; Eaton DC J Membr Biol; 1978 Jun; 41(2):117-48. PubMed ID: 671523 [TBL] [Abstract][Full Text] [Related]
18. Basic electrical properties of tight epithelia determined with a simple method. Erlij D Pflugers Arch; 1976 Jun; 364(1):91-3. PubMed ID: 822395 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of ion transport across the choroid plexus. Wright EM J Physiol; 1972 Oct; 226(2):545-71. PubMed ID: 4538945 [TBL] [Abstract][Full Text] [Related]
20. [Electrophysiological methods of studying the epithelial function]. Simon M Folia Med Cracov; 1984; 25(3-4):265-73. PubMed ID: 6100447 [No Abstract] [Full Text] [Related] [Next] [New Search]