These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 7010607)

  • 1. Cadmium-113 nuclear magnetic resonance studies of bovine insulin: two-zinc insulin hexamer specifically binds calcium.
    Sudmeier JL; Bell SJ; Storm MC; Dunn MF
    Science; 1981 May; 212(4494):560-2. PubMed ID: 7010607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H Fourier transform NMR studies of insulin: coordination of Ca2+ to the Glu(B13) site drives hexamer assembly and induces a conformation change.
    Palmieri R; Lee RW; Dunn MF
    Biochemistry; 1988 May; 27(9):3387-97. PubMed ID: 2898949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray structure of an unusual Ca2+ site and the roles of Zn2+ and Ca2+ in the assembly, stability, and storage of the insulin hexamer.
    Hill CP; Dauter Z; Dodson EJ; Dodson GG; Dunn MF
    Biochemistry; 1991 Jan; 30(4):917-24. PubMed ID: 1671209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational analysis by nuclear magnetic resonance: insulin.
    Williamson KL; Williams RJ
    Biochemistry; 1979 Dec; 18(26):5966-72. PubMed ID: 574774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of calcium ion on ternary complexes formed between 4-(2-pyridylazo)resorcinol and the two-zinc insulin hexamer.
    Kaarsholm NC; Dunn MF
    Biochemistry; 1987 Feb; 26(3):883-90. PubMed ID: 3552036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of metal ions in the T- to R-allosteric transition in the insulin hexamer.
    Kadima W
    Biochemistry; 1999 Oct; 38(41):13443-52. PubMed ID: 10521251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural signatures of the complex formed between 3-nitro-4-hydroxybenzoate and the Zn(II)-substituted R(6) insulin hexamer.
    Olsen HB; Leuenberger-Fisher MR; Kadima W; Borchardt D; Kaarsholm NC; Dunn MF
    Protein Sci; 2003 Sep; 12(9):1902-13. PubMed ID: 12930990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic evidence for dual coordination around zinc in the T3R3 human insulin hexamer.
    Ciszak E; Smith GD
    Biochemistry; 1994 Feb; 33(6):1512-7. PubMed ID: 8312271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the R-state insulin hexamer and its derivatives. The hexamer is stabilized by heterotropic ligand binding interactions.
    Brader ML; Kaarsholm NC; Lee RW; Dunn MF
    Biochemistry; 1991 Jul; 30(27):6636-45. PubMed ID: 2065051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium-113 nuclear magnetic resonance investigation of metal binding sites in concanavalin A.
    Palmer AR; Bailey DB; Benhke WD; Cardin AD; Yang PP; Ellis PD
    Biochemistry; 1980 Oct; 19(22):5063-70. PubMed ID: 7459324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1H n.m.r. studies of insulin. Reversible transformation of 2-zinc to 4-zinc insulin hexamer.
    Ramesh V; Bradbury JH
    Int J Pept Protein Res; 1986 Aug; 28(2):146-53. PubMed ID: 3533813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer -- a review.
    Dunn MF
    Biometals; 2005 Aug; 18(4):295-303. PubMed ID: 16158220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the zinc binding domains in the 7S nerve growth factor and the zinc-insulin hexamer.
    Dunn MF; Pattison SE; Storm MC; Quiel E
    Biochemistry; 1980 Feb; 19(4):718-25. PubMed ID: 6986905
    [No Abstract]   [Full Text] [Related]  

  • 14. Structural transition in the metal-free hexamer of protein-engineered [B13 Gln]insulin.
    Wollmer A; Rannefeld B; Stahl J; Melberg SG
    Biol Chem Hoppe Seyler; 1989 Sep; 370(9):1045-53. PubMed ID: 2692616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese (II) electron spin resonance and cadmium-113 nuclear magnetic resonance evidence for the nature of the calcium binding site in alpha-lactalbumins.
    Berliner LJ; Ellis PD; Murakami K
    Biochemistry; 1983 Oct; 22(22):5061-3. PubMed ID: 6317012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis, and testing of insulin hexamer-stabilizing agents.
    Manallack DT; Andrews PR; Woods EF
    J Med Chem; 1985 Oct; 28(10):1522-6. PubMed ID: 3900405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 113Cd NMR study of bovine prothrombin fragment 1 and factor X.
    Kingsley-Hickman PB; Nelsestuen GL; Uğurbil K
    Biochemistry; 1986 Jun; 25(11):3352-5. PubMed ID: 3755356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carboxylate ions are strong allosteric ligands for the HisB10 sites of the R-state insulin hexamer.
    Huang ST; Choi WE; Bloom C; Leuenberger M; Dunn MF
    Biochemistry; 1997 Aug; 36(32):9878-88. PubMed ID: 9245420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural asymmetry and half-site reactivity in the T to R allosteric transition of the insulin hexamer.
    Brzović PS; Choi WE; Borchardt D; Kaarsholm NC; Dunn MF
    Biochemistry; 1994 Nov; 33(44):13057-69. PubMed ID: 7947711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives.
    Goldman J; Carpenter FH
    Biochemistry; 1974 Oct; 13(22):4566-74. PubMed ID: 4473202
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.