These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7011363)

  • 21. Observation of a kinetic slow transition in monomeric glucokinase.
    Neet KE; Keenan RP; Tippett PS
    Biochemistry; 1990 Jan; 29(3):770-7. PubMed ID: 2337595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interconversions between different sulfhydryl-related kinetic states in glucokinase.
    Tippett PS; Neet KE
    Arch Biochem Biophys; 1983 Apr; 222(1):285-98. PubMed ID: 6838225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose metabolism and recycling by hepatocytes of OB/OB and ob/ob mice.
    Lahtela JT; Wals PA; Katz J
    Am J Physiol; 1990 Sep; 259(3 Pt 1):E389-96. PubMed ID: 2169201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbamoyl-phosphate synthetase II of the mammalian CAD protein: kinetic mechanism and elucidation of reaction intermediates by positional isotope exchange.
    Meek TD; Karsten WE; DeBrosse CW
    Biochemistry; 1987 May; 26(9):2584-93. PubMed ID: 3300776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism of rabbit muscle phosphofructokinase at pH8.
    Merry S; Britton HG
    Biochem J; 1985 Feb; 226(1):13-28. PubMed ID: 3156586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of the energetics of the UDP-glucose pyrophosphorylase reaction by positional isotope exchange inhibition.
    Hester LS; Raushel FM
    Biochemistry; 1987 Oct; 26(20):6465-71. PubMed ID: 2827728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 23-Residue C-terminal alpha-helix governs kinetic cooperativity in monomeric human glucokinase.
    Larion M; Miller BG
    Biochemistry; 2009 Jul; 48(26):6157-65. PubMed ID: 19473033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global fit analysis of glucose binding curves reveals a minimal model for kinetic cooperativity in human glucokinase.
    Larion M; Miller BG
    Biochemistry; 2010 Oct; 49(41):8902-11. PubMed ID: 20828143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.
    Agius L
    Biochem J; 1994 Feb; 298 ( Pt 1)(Pt 1):237-43. PubMed ID: 8129726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mannose phosphorylation by glucokinase from liver and transplantable insulinoma. Cooperativity and discrimination of anomers.
    Meglasson MD; Schinco M; Matschinsky FM
    Diabetes; 1983 Dec; 32(12):1146-51. PubMed ID: 6317500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic origin of the sigmoidal rate behaviour of rat liver hexokinase D ('glucokinase').
    Cornish-Bowden A; Storer AC
    Biochem J; 1986 Nov; 240(1):293-6. PubMed ID: 3493769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isotope exchange as a probe of the kinetic mechanism of pyrophosphate-dependent phosphofructokinase.
    Cho YK; Matsunaga TO; Kenyon GL; Bertagnolli BL; Cook PF
    Biochemistry; 1988 May; 27(9):3320-5. PubMed ID: 2839232
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and properties of adenosine 5'-triphospae-D-glucose 6-phosphotransferase from rat liver.
    Parry MJ; Walker DG
    Biochem J; 1966 May; 99(2):266-74. PubMed ID: 5944237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Isotope use in the study of hereditary metabolic diseases].
    Linneweh F
    Monatsschr Kinderheilkd (1902); 1970 Jun; 118(6):191-4. PubMed ID: 4943517
    [No Abstract]   [Full Text] [Related]  

  • 35. Kinetic analysis of the activation of Zymomonas mobilis glucokinase by phosphate.
    Scopes RK; Bannon DR
    Biochim Biophys Acta; 1995 Jun; 1249(2):173-9. PubMed ID: 7599171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucosamine-sensitive and -insensitive detritiation of [2-3H]glucose in isolated rat hepatocytes: a study of the contributions of glucokinase and glucose-6-phosphatase.
    Van Schaftigen E
    Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):23-9. PubMed ID: 7755569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isotope, pulse-chase, stopped-flow, and rapid quench studies on the kinetic mechanism of bovine dihydropteridine reductase.
    Poddar S; Henkin J
    Biochemistry; 1984 Jul; 23(14):3143-8. PubMed ID: 6380584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cooperative behaviour in monomeric enzymes. Change of negative to positive cooperativity by effect of a ligand.
    Olavarría JM; Cárdenas ML
    Arch Biol Med Exp; 1985 Dec; 18(3-4):285-92. PubMed ID: 3838040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase.
    Kamata K; Mitsuya M; Nishimura T; Eiki J; Nagata Y
    Structure; 2004 Mar; 12(3):429-38. PubMed ID: 15016359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of action of clostridial glycine reductase: isolation and characterization of a covalent acetyl enzyme intermediate.
    Arkowitz RA; Abeles RH
    Biochemistry; 1991 Apr; 30(16):4090-7. PubMed ID: 2018775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.