These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 7011392)

  • 1. Energy source for lithium efflux in yeast.
    Rodríguez-Navarro A; Sancho ED; Pérez-Lloveres C
    Biochim Biophys Acta; 1981 Jan; 640(1):352-8. PubMed ID: 7011392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae by addition of hydrogen peroxide.
    Sigler K; Höfer M
    Biochem Int; 1991 Mar; 23(5):861-73. PubMed ID: 1831983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of sodium efflux in yeast.
    Rodríguez-Navarro A; Ortega MD
    FEBS Lett; 1982 Feb; 138(2):205-8. PubMed ID: 7040111
    [No Abstract]   [Full Text] [Related]  

  • 4. Protonmotive force as the source of energy for adenosine 5'-triphosphate synthesis in Escherichia coli.
    Wilson DM; Alderette JF; Maloney PC; Wilson TH
    J Bacteriol; 1976 Apr; 126(1):327-37. PubMed ID: 4427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of amino acid transport in Saccharomyces cerevisiae by metabolic inhibitors.
    Horák J; Kotyk A; Ríhová L
    Folia Microbiol (Praha); 1978; 23(4):286-91. PubMed ID: 357269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose-dependent, cAMP-mediated ATP efflux from Saccharomyces cerevisiae.
    Boyum R; Guidotti G
    Microbiology (Reading); 1997 Jun; 143 ( Pt 6)():1901-1908. PubMed ID: 9202466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution to the physiological characterization of glycerol active uptake in Saccharomyces cerevisiae.
    Lages F; Lucas C
    Biochim Biophys Acta; 1997 Nov; 1322(1):8-18. PubMed ID: 9398075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of respiration chain-associated functions during initiation of germination of Bacillus megaterium spores.
    Dills SS; Vary JC
    Biochim Biophys Acta; 1978 Jul; 541(3):301-11. PubMed ID: 27232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of lactose transport into Escherichia coli in the presence and absence of a protonmotive force.
    Page MG; West IC
    FEBS Lett; 1980 Nov; 120(2):187-91. PubMed ID: 7002613
    [No Abstract]   [Full Text] [Related]  

  • 10. The influence of uncouplers on facilitated diffusion of sorbose in Saccharomyces cerevisiae.
    Van den Broek PJ; Haasnoot CJ; Van Leeuwen CC; Van Steveninck J
    Biochim Biophys Acta; 1982 Aug; 689(3):429-36. PubMed ID: 6751390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy requirements for maltose transport in yeast.
    Serrano R
    Eur J Biochem; 1977 Oct; 80(1):97-102. PubMed ID: 21792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electrochemical proton gradient of Saccharomyces. The role of potassium.
    de la Peña P; Barros F; Gascón S; Ramos S; Lazo PS
    Eur J Biochem; 1982 Apr; 123(2):447-53. PubMed ID: 6281011
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of yeast killer toxin on sensitive cells of Saccharomyces cerevisiae.
    de la Peña P; Barros F; Gascón S; Lazo PS; Ramos S
    J Biol Chem; 1981 Oct; 256(20):10420-5. PubMed ID: 7026560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allantoate transport in Saccharomyces cerevisiae.
    Turoscy V; Cooper TG
    J Bacteriol; 1979 Dec; 140(3):971-9. PubMed ID: 42640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells.
    Dibrov PA; Lazarova RL; Skulachev VP; Verkhovskaya ML
    Biochim Biophys Acta; 1986 Jul; 850(3):458-65. PubMed ID: 2942186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ureidosuccinic acid permeation in Saccharomyces cerevisiae.
    Greth ML; Chevallier MR; Lacroute F
    Biochim Biophys Acta; 1977 Feb; 465(1):138-51. PubMed ID: 13831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport kinetics of 6-deoxy-D-glucose in Candida parapsilosis.
    Kotyk A; Michaljanicová D
    Folia Microbiol (Praha); 1978; 23(1):18-26. PubMed ID: 23984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Active electrogenic transport H+ in plasma membrane vesicles of cow parsnip phloem cells].
    Kalinin VA; Opritov VA; Shvets IM
    Biofizika; 1982; 27(1):58-61. PubMed ID: 6461361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for proton motive force dependent transport of selenite by Clostridium pasteurianum.
    Bryant RD; Laishley EJ
    Can J Microbiol; 1989 Apr; 35(4):481-6. PubMed ID: 2743219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose transport in a methylotrophic yeast Hansenula polymorpha.
    Karp H; Alamäe T
    FEMS Microbiol Lett; 1998 Sep; 166(2):267-73. PubMed ID: 9770284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.