These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 7011406)
1. Enzymatic synthesis in biphasic aqueous-organic systems. I. Chemical equilibrium shift. Martinek K; Semenov AN; Berezin IV Biochim Biophys Acta; 1981 Mar; 658(1):76-89. PubMed ID: 7011406 [TBL] [Abstract][Full Text] [Related]
2. Enzymatic synthesis in biphasic aqueous-organic systems. II. Shift of ionic equilibria. Martinek K; Semenov AN Biochim Biophys Acta; 1981 Mar; 658(1):90-101. PubMed ID: 7213763 [TBL] [Abstract][Full Text] [Related]
3. A new approach to preparative enzymatic synthesis. Reprinted from Biotechnology and Bioengineering, Vol. XIX, No. 9, Pages 1351-1361. Klibanov AM; Samokhin GP; Martinek K; Berezin IV Biotechnol Bioeng; 2000 Mar; 67(6):737-47. PubMed ID: 10699855 [TBL] [Abstract][Full Text] [Related]
4. Kinetics and equilibrium of enzymatic synthesis of peptides in aqueous/organic biphasic systems. Thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester. Nakanishi K; Kimura Y; Matsuno R Eur J Biochem; 1986 Dec; 161(3):541-9. PubMed ID: 3792308 [TBL] [Abstract][Full Text] [Related]
5. Kinetics and equilibrium for thermolysin-catalyzed syntheses of dipeptide precursors in aqueous/organic biphasic systems. Miyanaga M; Ohmori M; Imamura K; Sakiyama T; Nakanishi K J Biosci Bioeng; 2000; 90(1):43-51. PubMed ID: 16232816 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of enzymatic synthesis of peptides in aqueous/organic biphasic systems. Thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-phenylalanine methyl ester. Nakanishi K; Matsuno R Eur J Biochem; 1986 Dec; 161(3):533-40. PubMed ID: 3792307 [TBL] [Abstract][Full Text] [Related]
7. Kinetic theory of enzymatic reactions in reversed micellar systems. Application of the pseudophase approach for partitioning substrates. Khmelnitsky YL; Neverova IN; Polyakov VI; Grinberg VYa ; Levashov AV; Martinek K Eur J Biochem; 1990 May; 190(1):155-9. PubMed ID: 2364944 [TBL] [Abstract][Full Text] [Related]
8. Kinetics and specificity of serine proteases in peptide synthesis catalyzed in organic solvents. Gaertner H; Puigserver A Eur J Biochem; 1989 Apr; 181(1):207-13. PubMed ID: 2653820 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic parameters monitoring the equilibrium shift of enzyme-catalyzed hydrolysis/synthesis reactions in favor of synthesis in mixtures of water and organic solvent. Deschrevel B; Vincent JC; Ripoll C; Thellier M Biotechnol Bioeng; 2003 Jan; 81(2):167-77. PubMed ID: 12451553 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic peptide synthesis in organic media: a comparative study of water-miscible and water-immiscible solvent systems. Clapés P; Adlercreutz P; Mattiasson B J Biotechnol; 1990 Sep; 15(4):323-38. PubMed ID: 1366830 [TBL] [Abstract][Full Text] [Related]
11. Microbial synthesis of ethyl (R)-4,4,4-trifluoro-3-hydroxybutanoate by asymmetric reduction of ethyl 4,4,4-trifluoroacetoacetate in an aqueous-organic solvent biphasic system. He J; Mao X; Sun Z; Zheng P; Ni Y; Xu Y Biotechnol J; 2007 Feb; 2(2):260-5. PubMed ID: 17068756 [TBL] [Abstract][Full Text] [Related]
12. Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis. Wangler A; Canales R; Held C; Luong TQ; Winter R; Zaitsau DH; Verevkin SP; Sadowski G Phys Chem Chem Phys; 2018 Apr; 20(16):11317-11326. PubMed ID: 29637955 [TBL] [Abstract][Full Text] [Related]
13. The effect of organic solvents on the equilibrium position of enzymatic acylglycerol synthesis. Janseen AE; Van der Padt A; Van Sonsbeek HM; Van't Riet K Biotechnol Bioeng; 1993 Jan; 41(1):95-103. PubMed ID: 18601250 [TBL] [Abstract][Full Text] [Related]
14. Peptide synthesis in organic solvents with an immobilized enzyme. Nakanisi K; Nagayasu T Biomed Biochim Acta; 1991; 50(10-11):S50-4. PubMed ID: 1820060 [TBL] [Abstract][Full Text] [Related]
15. The effect of water on enzyme action in organic media. Zaks A; Klibanov AM J Biol Chem; 1988 Jun; 263(17):8017-21. PubMed ID: 3131337 [TBL] [Abstract][Full Text] [Related]
16. Effect of immiscible organic solvents on activity/stability of native chymotrypsin and immobilized-stabilized derivatives. Blanco RM; Halling PJ; Bastida A; Cuesta C; Guisáun JM Biotechnol Bioeng; 1992 Jan; 39(1):75-84. PubMed ID: 18600889 [TBL] [Abstract][Full Text] [Related]
17. Polyvinyl alcohol--trypsin as a catalyst for amino acid ester synthesis in organic media. Yesiloglu Y; Kilic I Prep Biochem Biotechnol; 2004 Nov; 34(4):365-75. PubMed ID: 15553905 [TBL] [Abstract][Full Text] [Related]
18. Activity and selectivity of W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus in organic solvents and ionic liquids: mono- and biphasic media. Musa MM; Ziegelmann-Fjeld KI; Vieille C; Phillips RS Org Biomol Chem; 2008 Mar; 6(5):887-92. PubMed ID: 18292880 [TBL] [Abstract][Full Text] [Related]
19. Analysis for partition equilibrium of amino acid derivatives in aqueous/organic biphasic systems. Miyanaga M; Imamura K; Tanaka K; Sakiyama T; Nakanishi K J Biosci Bioeng; 1999; 88(6):651-8. PubMed ID: 16232679 [TBL] [Abstract][Full Text] [Related]
20. On the importance of the support material for bioorganic synthesis. Influence of water partition between solvent, enzyme and solid support in water-poor reaction media. Reslow M; Adlercreutz P; Mattiasson B Eur J Biochem; 1988 Mar; 172(3):573-8. PubMed ID: 3350014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]