These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7011418)

  • 1. Experimental evolution of propanediol oxidoreductase in Escherichia coli. Comparative analysis of the wild-type and mutant enzymes.
    Boronat A; Aguilar J
    Biochim Biophys Acta; 1981 Jan; 672(1):98-107. PubMed ID: 7011418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of L-1, 2-propanediol catabolism in Escherichia coli by recruitment of enzymes for L-fucose and L-lactate metabolism.
    Cocks GT; Aguilar T; Lin EC
    J Bacteriol; 1974 Apr; 118(1):83-8. PubMed ID: 4595205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and structural evidence for the presence of propanediol oxidoreductase isoenzymes in Escherichia coli.
    Ros J; Aguilar J
    J Gen Microbiol; 1984 Mar; 130(3):687-92. PubMed ID: 6427403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhamnose-induced propanediol oxidoreductase in Escherichia coli: purification, properties, and comparison with the fucose-induced enzyme.
    Boronat A; Aguilar J
    J Bacteriol; 1979 Nov; 140(2):320-6. PubMed ID: 40956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory changes in the fucose system associated with the evolution of a catabolic pathway for propanediol in Escherichia coli.
    Hacking AJ; Lin EC
    J Bacteriol; 1977 May; 130(2):832-8. PubMed ID: 400796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli.
    Hacking AJ; Lin EC
    J Bacteriol; 1976 Jun; 126(3):1166-72. PubMed ID: 181364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of operon fusions to examine the regulation of the L-1,2-propanediol oxidoreductase gene of the fucose system in Escherichia coli K12.
    Chen YM; Lin EC; Ros J; Aguilar J
    J Gen Microbiol; 1983 Nov; 129(11):3355-62. PubMed ID: 6319547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation.
    Baldomà L; Aguilar J
    J Bacteriol; 1988 Jan; 170(1):416-21. PubMed ID: 3275622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propanediol oxidoreductases of Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. Aspects of interspecies structural and regulatory differentiation.
    Ros J; Aguilar J
    Biochem J; 1985 Oct; 231(1):145-9. PubMed ID: 3904730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-1,2-propanediol exits more rapidly than L-lactaldehyde from Escherichia coli.
    Zhu Y; Lin EC
    J Bacteriol; 1989 Feb; 171(2):862-7. PubMed ID: 2644239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of propanediol utilization in Escherichia coli: mutant with improved substrate-scavenging power.
    Hacking AJ; Aguilar J; Lin EC
    J Bacteriol; 1978 Nov; 136(2):522-30. PubMed ID: 361712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of L-fucose and L-rhamnose in Escherichia coli: differences in induction of propanediol oxidoreductase.
    Boronat A; Aguilar J
    J Bacteriol; 1981 Jul; 147(1):181-5. PubMed ID: 7016842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual control of a common L-1,2-propanediol oxidoreductase by L-fucose and L-rhamnose in Escherichia coli.
    Chen YM; Lin EC
    J Bacteriol; 1984 Mar; 157(3):828-32. PubMed ID: 6421801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate scope and selectivity in offspring to an enzyme subjected to directed evolution.
    Blikstad C; Dahlström KM; Salminen TA; Widersten M
    FEBS J; 2014 May; 281(10):2387-98. PubMed ID: 24673815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of an Escherichia coli protein with increased resistance to oxidative stress.
    Lu Z; Cabiscol E; Obradors N; Tamarit J; Ros J; Aguilar J; Lin EC
    J Biol Chem; 1998 Apr; 273(14):8308-16. PubMed ID: 9525938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-transcriptional control of L-1,2-propanediol oxidoreductase in the L-fucose pathway of Escherichia coli K-12.
    Chen YM; Lin EC
    J Bacteriol; 1984 Jan; 157(1):341-4. PubMed ID: 6418721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of aldehyde dehydrogenase in an Escherichia coli mutant selected for growth on the rare sugar L-galactose.
    Zhu Y; Lin EC
    J Bacteriol; 1987 Feb; 169(2):785-9. PubMed ID: 3542971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of propanediol oxidoreductase of Escherichia coli by metal-catalyzed oxidation.
    Cabiscol E; Badia J; Baldoma L; Hidalgo E; Aguilar J; Ros J
    Biochim Biophys Acta; 1992 Jan; 1118(2):155-60. PubMed ID: 1730033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identity of Escherichia coli D-1-amino-2-propanol:NAD+ oxidoreductase with E. coli glycerol dehydrogenase but not with Neisseria gonorrhoeae 1,2-propanediol:NAD+ oxidoreductase.
    Kelley JJ; Dekker EE
    J Bacteriol; 1985 Apr; 162(1):170-5. PubMed ID: 3920199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.