BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 7011797)

  • 1. Succinic semialdehyde dehydrogenases of Escherichia coli: their role in the degradation of p-hydroxyphenylacetate and gamma-aminobutyrate.
    Donnelly MI; Cooper RA
    Eur J Biochem; 1981 Jan; 113(3):555-61. PubMed ID: 7011797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties and functions of two succinic-semialdehyde dehydrogenases from Pseudomonas putida.
    Sànchez M; Alvarez MA; Balaña R; Garrido-Pertierra A
    Biochim Biophys Acta; 1988 Apr; 953(3):249-57. PubMed ID: 3355840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Escherichia coli mutant defective in the NAD-dependent succinate semialdehyde dehydrogenase.
    Skinner MA; Cooper RA
    Arch Microbiol; 1982 Sep; 132(3):270-5. PubMed ID: 6756331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and properties of two succinic semialdehyde dehydrogenases from Klebsiella pneumoniae.
    Sanchez M; Fernández J; Martin M; Gibello A; Garrido-Pertierra A
    Biochim Biophys Acta; 1989 Mar; 990(3):225-31. PubMed ID: 2647149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation and characterization of NAD- and NADP-specific succinate-semialdehyde dehydrogenase from Escherichia coli K-12 3300.
    Cozzani I; Fazio AM; Felici E; Barletta G
    Biochim Biophys Acta; 1980 Jun; 613(2):309-17. PubMed ID: 7004491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboxymethylhydroxymuconic semialdehyde dehydrogenase in the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli.
    Alonso JM; Garrido-Pertierra A
    Biochim Biophys Acta; 1982 Oct; 719(1):165-7. PubMed ID: 6756482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two succinic semialdehyde dehydrogenases are induced when Escherichia coli K-12 Is grown on gamma-aminobutyrate.
    Donnelly MI; Cooper RA
    J Bacteriol; 1981 Mar; 145(3):1425-7. PubMed ID: 7009588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mitochondrial NADP+-dependent reductase related to the 4-aminobutyrate shunt. Purification, characterization, and mechanism.
    Hearl WG; Churchich JE
    J Biol Chem; 1985 Dec; 260(30):16361-6. PubMed ID: 4066712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of gamma-aminobutyrate.
    Metzer E; Levitz R; Halpern YS
    J Bacteriol; 1979 Mar; 137(3):1111-8. PubMed ID: 374339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae.
    Ramos F; el Guezzar M; Grenson M; Wiame JM
    Eur J Biochem; 1985 Jun; 149(2):401-4. PubMed ID: 3888627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human brain "high Km" aldehyde dehydrogenase: purification, characterization, and identification as NAD+ -dependent succinic semialdehyde dehydrogenase.
    Ryzlak MT; Pietruszko R
    Arch Biochem Biophys; 1988 Nov; 266(2):386-96. PubMed ID: 3190233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the anticonvulsant sodium valproate on gamma-aminobutyrate and aldehyde metabolism in ox brain.
    Whittle SR; Turner AJ
    J Neurochem; 1978 Dec; 31(6):1453-9. PubMed ID: 121742
    [No Abstract]   [Full Text] [Related]  

  • 13. In Vivo and In Vitro Studies on gamma-Aminobutyric Acid Metabolism with the Radish Plant (Raphanus sativus, L.).
    Streeter JG; Thompson JF
    Plant Physiol; 1972 Apr; 49(4):579-84. PubMed ID: 16658005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of human liver "high Km" aldehyde dehydrogenase and its identification as glutamic gamma-semialdehyde dehydrogenase.
    Forte-McRobbie CM; Pietruszko R
    J Biol Chem; 1986 Feb; 261(5):2154-63. PubMed ID: 3944130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation and properties of the NAD-linked and NADP-linked isozymes of succinic semialdehyde dehydrogenase in Euglena gracilis z.
    Tokunaga M; Nakano Y; Kitaoka S
    Biochim Biophys Acta; 1976 Mar; 429(1):55-62. PubMed ID: 4121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-linked succinic semialdehyde dehydrogenases in a Pseudonomas species.
    Padmanabhan R; Tchen TT
    J Bacteriol; 1969 Oct; 100(1):398-402. PubMed ID: 4390503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Succinic semialdehyde reductase Gox1801 from Gluconobacter oxydans in comparison to other succinic semialdehyde-reducing enzymes.
    Meyer M; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2015 May; 99(9):3929-39. PubMed ID: 25425279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of succinic semialdehyde dehydrogenase from Aspergillus niger.
    Kumar S; Kumar S; Punekar NS
    Indian J Exp Biol; 2015 Feb; 53(2):67-74. PubMed ID: 25757236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Succinic semialdehyde dehydrogenase deficiency: an inborn error of gamma-aminobutyric acid metabolism.
    Gibson KM; Sweetman L; Nyhan WL; Jakobs C; Rating D; Siemes H; Hanefeld F
    Clin Chim Acta; 1983 Sep; 133(1):33-42. PubMed ID: 6627675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the function of paralogs of the aldehyde dehydrogenase super family from Sulfolobus solfataricus.
    Esser D; Kouril T; Talfournier F; Polkowska J; Schrader T; Bräsen C; Siebers B
    Extremophiles; 2013 Mar; 17(2):205-16. PubMed ID: 23296511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.