BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 7012137)

  • 1. Formation and excretion of acetylmaltose after accumulation of maltose in Escherichia coli.
    Boos W; Ferenci T; Shuman HA
    J Bacteriol; 1981 May; 146(2):725-32. PubMed ID: 7012137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The maltose-maltodextrin transport system of Escherichia coli.
    Shuman HA
    Ann Microbiol (Paris); 1982 Jan; 133A(1):153-9. PubMed ID: 7041738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the Escherichia coli lambda receptor in the transport of maltose and maltodextrins.
    Ferenci T; Boos W
    J Supramol Struct; 1980; 13(1):101-16. PubMed ID: 7003263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the periplasmic maltose-binding protein and the outer-membrane phage lambda receptor in maltodextrin transport of Escherichia coli.
    Ferenci T; Brass J; Boos W
    Biochem Soc Trans; 1980 Dec; 8(6):680-1. PubMed ID: 6450701
    [No Abstract]   [Full Text] [Related]  

  • 5. Maltose and maltodextrin transport in Escherichia coli.
    Wandersman C
    Ann Microbiol (Paris); 1982 Jan; 133A(1):161-3. PubMed ID: 7041739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspects of maltose transport in Escherichia coli: established facts and educated guesses.
    Boos W
    Ann Microbiol (Paris); 1982 Jan; 133A(1):145-51. PubMed ID: 7041737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The maltodextrin system of Escherichia coli: metabolism and transport.
    Dippel R; Boos W
    J Bacteriol; 2005 Dec; 187(24):8322-31. PubMed ID: 16321936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate specificity of the Escherichia coli maltodextrin transport system and its component proteins.
    Ferenci T; Muir M; Lee KS; Maris D
    Biochim Biophys Acta; 1986 Aug; 860(1):44-50. PubMed ID: 3524683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acarbose, a pseudooligosaccharide, is transported but not metabolized by the maltose-maltodextrin system of Escherichia coli.
    Brunkhorst C; Andersen C; Schneider E
    J Bacteriol; 1999 Apr; 181(8):2612-9. PubMed ID: 10198028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus.
    Neugebauer H; Herrmann C; Kammer W; Schwarz G; Nordheim A; Braun V
    J Bacteriol; 2005 Dec; 187(24):8300-11. PubMed ID: 16321934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The recognition of maltodextrins by Escherichia coli.
    Ferenci T
    Eur J Biochem; 1980 Jul; 108(2):631-6. PubMed ID: 6997044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex.
    Hor LI; Shuman HA
    J Mol Biol; 1993 Oct; 233(4):659-70. PubMed ID: 8411172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maltose transacetylase of Escherichia coli: a preliminary report.
    Freundlieb S; Boos W
    Ann Microbiol (Paris); 1982 Jan; 133A(1):181-9. PubMed ID: 7041741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two modes of ligand binding in maltose-binding protein of Escherichia coli. Functional significance in active transport.
    Hall JA; Ganesan AK; Chen J; Nikaido H
    J Biol Chem; 1997 Jul; 272(28):17615-22. PubMed ID: 9211910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maltose and maltodextrin transport in the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius is mediated by a high-affinity transport system that includes a maltose binding protein tolerant to low pH.
    Hülsmann A; Lurz R; Scheffel F; Schneider E
    J Bacteriol; 2000 Nov; 182(22):6292-301. PubMed ID: 11053372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems.
    Hengge R; Boos W
    Biochim Biophys Acta; 1983 Aug; 737(3-4):443-78. PubMed ID: 6349688
    [No Abstract]   [Full Text] [Related]  

  • 17. Reconstitution of maltose transport in malB and malA mutants of Escherichia coli.
    Brass JM
    Ann Microbiol (Paris); 1982 Jan; 133A(1):171-80. PubMed ID: 7041740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tritium NMR spectroscopy of ligand binding to maltose-binding protein.
    Gehring K; Williams PG; Pelton JG; Morimoto H; Wemmer DE
    Biochemistry; 1991 Jun; 30(22):5524-31. PubMed ID: 2036421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maltose transport in Escherichia coli: mutations that uncouple ATP hydrolysis from transport.
    Panagiotidis CH; Shuman HA
    Methods Enzymol; 1998; 292():30-9. PubMed ID: 9711544
    [No Abstract]   [Full Text] [Related]  

  • 20. Structure of the maltodextrin-uptake locus of Streptococcus pneumoniae. Correlation to the Escherichia coli maltose regulon.
    Puyet A; Espinosa M
    J Mol Biol; 1993 Apr; 230(3):800-11. PubMed ID: 8478935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.