These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7012543)

  • 1. Kinetic features of cotransport mechanisms under isotope exchange conditions.
    Hopfer U; Liedtke CM
    Membr Biochem; 1981; 4(1):11-29. PubMed ID: 7012543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Cl- translocation across small intestinal brush-border membrane. I. Absence of Na+-Cl- cotransport.
    Liedtke CM; Hopfer U
    Am J Physiol; 1982 Mar; 242(3):G263-71. PubMed ID: 7065188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary active nutrient transport in membrane vesicles: theoretical basis for use of isotope exchange at equilibrium and contributions to transport mechanisms.
    Hopfer U
    Biochem Soc Symp; 1985; 50():151-68. PubMed ID: 3915868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of Na+-L-lactate cotransport by brush-border membrane vesicles from horse kidney. Analysis by isotopic exchange kinetics of a sequential model and stoichiometry.
    Mengual R; Leblanc G; Sudaka P
    J Biol Chem; 1983 Dec; 258(24):15071-8. PubMed ID: 6654905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of models for cotransport.
    Harrison DA; Rowe GW; Lumsden CJ; Silverman M
    Biochim Biophys Acta; 1984 Jul; 774(1):1-10. PubMed ID: 6539622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis of a family of cotransport models.
    Turner RJ
    Biochim Biophys Acta; 1981 Dec; 649(2):269-80. PubMed ID: 7317398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosterism and Na(+)-D-glucose cotransport kinetics in rabbit jejunal vesicles: compatibility with mixed positive and negative cooperativities in a homo- dimeric or tetrameric structure and experimental evidence for only one transport protein involved.
    Chenu C; Berteloot A
    J Membr Biol; 1993 Mar; 132(2):95-113. PubMed ID: 8496949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of Na-K-2Cl cotransport based on ordered ion binding and glide symmetry.
    Lytle C; McManus TJ; Haas M
    Am J Physiol; 1998 Feb; 274(2):C299-309. PubMed ID: 9486118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Furosemide-sensitive K+ (Rb+) transport in human erythrocytes: modes of operation, dependence on extracellular and intracellular Na+, kinetics, pH dependency and the effect of cell volume and N-ethylmaleimide.
    Duhm J
    J Membr Biol; 1987; 98(1):15-32. PubMed ID: 3669063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic coupling of Na-glucose cotransport.
    Centelles JJ; Kinne RK; Heinz E
    Biochim Biophys Acta; 1991 Jun; 1065(2):239-49. PubMed ID: 2059656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylalanine transport in guinea pig jejunum. A general mechanism for organic solute and sodium cotransport.
    Alvarado F; Lherminier M
    J Physiol (Paris); 1982 Aug; 78(2):131-45. PubMed ID: 7131327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cotransport of sodium and chloride by the adult mammalian choroid plexus.
    Johanson CE; Sweeney SM; Parmelee JT; Epstein MH
    Am J Physiol; 1990 Feb; 258(2 Pt 1):C211-6. PubMed ID: 2137674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and peculiarities of thermal inactivation of volume-induced Na+/H+ exchange, Na+,K+,2Cl- cotransport and K+,Cl- cotransport in rat erythrocytes.
    Orlov SN; Kolosova IA; Cragoe EJ; Gurlo TG; Mongin AA; Aksentsev SL; Konev SV
    Biochim Biophys Acta; 1993 Sep; 1151(2):186-92. PubMed ID: 8396975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anion transport systems in the plasma membrane of vertebrate cells.
    Hoffmann EK
    Biochim Biophys Acta; 1986 Jun; 864(1):1-31. PubMed ID: 3521744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stoichiometry of sodium- and chloride-coupled glycine transport in synaptic plasma membrane vesicles derived from rat brain.
    Aragón MC; Giménez C; Mayor F
    FEBS Lett; 1987 Feb; 212(1):87-90. PubMed ID: 3803611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium entry mechanisms in distal convoluted tubule cells.
    Gesek FA; Friedman PA
    Am J Physiol; 1995 Jan; 268(1 Pt 2):F89-98. PubMed ID: 7840252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-chloride transport in the medullary thick ascending limb of Henle's loop: evidence for a sodium-chloride cotransport system in plasma membrane vesicles.
    Eveloff J; Kinne R
    J Membr Biol; 1983; 72(3):173-81. PubMed ID: 6854622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism(s) of chloride transport in human distal colonic apical membrane vesicles.
    Alrefai WA; Ramaswamy K; Dudeja PK
    Dig Dis Sci; 2001 Oct; 46(10):2209-18. PubMed ID: 11680599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na-K-Cl cotransport in nystatin-treated tracheal cells: regulation by isoproterenol, apical UTP, and [Cl]i.
    Haas M; McBrayer DG
    Am J Physiol; 1994 May; 266(5 Pt 1):C1440-52. PubMed ID: 8203506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biologically active atrial natriuretic peptides selectively activate Na/K/Cl cotransport in vascular smooth muscle cells.
    O'Donnell ME; Bush EN; Holleman W; Owen NE
    J Pharmacol Exp Ther; 1987 Dec; 243(3):822-8. PubMed ID: 2826759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.