These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7012639)

  • 41. The HflB protease of Escherichia coli degrades its inhibitor lambda cIII.
    Herman C; Thévenet D; D'Ari R; Bouloc P
    J Bacteriol; 1997 Jan; 179(2):358-63. PubMed ID: 8990286
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proton-motive force stimulates the proteolytic activity of FtsH, a membrane-bound ATP-dependent protease in Escherichia coli.
    Akiyama Y
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):8066-71. PubMed ID: 12034886
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [In vitro coupling of ATP hydrolysis to proteolysis of ATP site mutant forms of Lon-proteinase from E.coli].
    Mel'nikov EE; Tsirul'nikov KB; Ginodman LM; Rotanova TV
    Bioorg Khim; 1998 Apr; 24(4):293-9. PubMed ID: 9612572
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Structural and functional characteristics of ATP-dependent Lon-proteinase from Escherichia coli].
    Rotanova TV
    Bioorg Khim; 1999 Dec; 25(12):883-91. PubMed ID: 10734549
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Saturation and specificity of the Lon protease of Escherichia coli.
    Dervyn E; Canceill D; Huisman O
    J Bacteriol; 1990 Dec; 172(12):7098-103. PubMed ID: 2254276
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic characterization of the peptidase activity of Escherichia coli Lon reveals the mechanistic similarities in ATP-dependent hydrolysis of peptide and protein substrates.
    Thomas-Wohlever J; Lee I
    Biochemistry; 2002 Jul; 41(30):9418-25. PubMed ID: 12135363
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease from Escherichia coli.
    Sakoh M; Ito K; Akiyama Y
    J Biol Chem; 2005 Sep; 280(39):33305-10. PubMed ID: 16076848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Demonstration of an ATP-dependent, vanadate-sensitive endoprotease in the matrix of rat liver mitochondria.
    Desautels M; Goldberg AL
    J Biol Chem; 1982 Oct; 257(19):11673-9. PubMed ID: 6749845
    [No Abstract]   [Full Text] [Related]  

  • 49. Molecular mechanism for dominance of a mutant allele of an ATP-dependent protease.
    Charette MF; Henderson GW; Kézdy FJ; Markovitz A
    J Mol Biol; 1982 Dec; 162(2):503-10. PubMed ID: 6761442
    [No Abstract]   [Full Text] [Related]  

  • 50. [Intracellular proteolysis].
    Duque-Magalhães MC
    Biochimie; 1984; 66(11-12):653-62. PubMed ID: 6398709
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ATP-dependent protease in human placenta.
    Ishii A; Watabe S; Hamada H
    Placenta; 1992; 13(4):343-7. PubMed ID: 1438082
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteases in Escherichia coli.
    Chung CH
    Science; 1993 Oct; 262(5132):372-4. PubMed ID: 8211156
    [No Abstract]   [Full Text] [Related]  

  • 53. SNAC-tag for sequence-specific chemical protein cleavage.
    Dang B; Mravic M; Hu H; Schmidt N; Mensa B; DeGrado WF
    Nat Methods; 2019 Apr; 16(4):319-322. PubMed ID: 30923372
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The ATP dependence of the degradation of short- and long-lived proteins in growing fibroblasts.
    Gronostajski RM; Pardee AB; Goldberg AL
    J Biol Chem; 1985 Mar; 260(6):3344-9. PubMed ID: 3972829
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Masked proteolytic activity localized in the outer membrane of Escherichia coli.
    Regnier P; Thang MN
    FEBS Lett; 1979 Jun; 102(2):291-6. PubMed ID: 378709
    [No Abstract]   [Full Text] [Related]  

  • 56. Senescence and the accumulation of abnormal proteins.
    Rosenberger RF
    Mutat Res; 1991; 256(2-6):255-62. PubMed ID: 1722015
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulatory subunits of energy-dependent proteases.
    Gottesman S; Maurizi MR; Wickner S
    Cell; 1997 Nov; 91(4):435-8. PubMed ID: 9390551
    [No Abstract]   [Full Text] [Related]  

  • 58. Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB.
    Herman C; Ogura T; Tomoyasu T; Hiraga S; Akiyama Y; Ito K; Thomas R; D'Ari R; Bouloc P
    Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10861-5. PubMed ID: 8248182
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32.
    Tomoyasu T; Gamer J; Bukau B; Kanemori M; Mori H; Rutman AJ; Oppenheim AB; Yura T; Yamanaka K; Niki H
    EMBO J; 1995 Jun; 14(11):2551-60. PubMed ID: 7781608
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins.
    Desautels M; Goldberg AL
    Proc Natl Acad Sci U S A; 1982 Mar; 79(6):1869-73. PubMed ID: 7043466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.