These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 701361)

  • 1. Fat body protein granules and storage proteins in the silkmoth, Hyalophora cecropia.
    Tojo S; Betchaku T; Ziccardi VJ; Wyatt GR
    J Cell Biol; 1978 Sep; 78(3):823-38. PubMed ID: 701361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha-Glycerol phosphatase and glycerol kinase activities in tissues of the silkmoth Hyalophora cecropia during the larval-pupal transformation.
    Jungreis AM; Dailey JC; Hereth ML
    Am J Physiol; 1975 Nov; 229(5):1448-54. PubMed ID: 173194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium and uric acid content in tissues of the silkmoth Hyalophora cecropia.
    Jungreis AM; Tojo S
    Am J Physiol; 1973 Jan; 224(1):21-6. PubMed ID: 4683305
    [No Abstract]   [Full Text] [Related]  

  • 4. Protein uptake into multivesicular bodies and storage granules in the fat body of an insect.
    Locke M; Collins JV
    J Cell Biol; 1968 Mar; 36(3):453-83. PubMed ID: 5645544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DIGLYCERIDE RELEASE FROM INSECT FAT BODY: A POSSIBLE MEANS OF LIPID TRANSPORT.
    CHINO H; GILBERT LI
    Science; 1964 Jan; 143(3604):359-61. PubMed ID: 14074850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the formation of protein storage granules by glutaurine in the larval fat body cells of Mamestra brassicae (Insecta, Lepidoptera).
    Sass M; Kömüves LG; Kovács J; Feuer L
    Acta Biol Hung; 1986; 37(3-4):249-57. PubMed ID: 3442174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Storage hexamer utilization in two lepidopterans: differences correlated with the timing of egg formation.
    Pan ML; Telfer WH
    J Insect Sci; 2001; 1():2. PubMed ID: 15455062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selectivity in storage hexamerin clearing demonstrated with hemolymph transfusions between Hyalophora cecropia and Actias luna.
    Pan ML; Telfer WH
    Arch Insect Biochem Physiol; 1992; 19(3):203-21. PubMed ID: 1627824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia.
    Hultmark D; Steiner H; Rasmuson T; Boman HG
    Eur J Biochem; 1980 May; 106(1):7-16. PubMed ID: 7341234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar release and penetration in insect fat body: relations to regulation of haemolymph trehalose in developing stages of Hyalophora cecropia.
    Jungreis AM; Wyatt GR
    Biol Bull; 1972 Oct; 143(2):367-91. PubMed ID: 4637909
    [No Abstract]   [Full Text] [Related]  

  • 11. Properties and significance of a riboflavin-binding hexamerin in the hemolymph of Hyalophora cecropia.
    Magee J; Kraynack N; Massey HC; Telfer WH
    Arch Insect Biochem Physiol; 1994; 25(2):137-57. PubMed ID: 8136519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in fat body hexokinase activity during the larval-pupal transformation of the silkmoth Hyalophora cecropia.
    Jungreis AM
    Comp Biochem Physiol B; 1976; 53(2):201-4. PubMed ID: 1253556
    [No Abstract]   [Full Text] [Related]  

  • 13. Synthesis and resorption of a humoral chymotrypsin inhibitor, CI-8, by fat body of the silkworm, Bombyx mori.
    Shirai K; Fujii H; Doira H; Iwamoto H
    Insect Biochem Mol Biol; 2000 May; 30(5):363-8. PubMed ID: 10745159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insect immunity. 11. Simultaneous induction of antibacterial activity and selection synthesis of some hemolymph proteins in diapausing pupae of Hyalophora cecropia and Samia cynthia.
    Faye I; Pye A; Rasmuson T; Boman HG; Boman IA
    Infect Immun; 1975 Dec; 12(6):1426-38. PubMed ID: 812827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic post-feeding changes in fat body and hemolymph of Dipetalogaster maximus (Hemiptera: Reduviidae).
    Canavoso LE; Rubiolo ER
    Mem Inst Oswaldo Cruz; 1998; 93(2):225-30. PubMed ID: 9698899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of biliverdin-binding vitellogenin from the hemolymph of the common cutworm, Spodoptera litura.
    Maruta K; Yoshiga T; Katagiri C; Ochiai M; Tojo S
    Arch Insect Biochem Physiol; 2002 Jun; 50(2):97-106. PubMed ID: 12173294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. THE NUCLEIC ACID CONTENT OF TISSUES OF CECROPIA SILKMOTH PUPAE. RELATIONS TO BODY SIZE AND DEVELOPMENT.
    LINZEN B; WYATT GR
    Biochim Biophys Acta; 1964 Jun; 87():188-98. PubMed ID: 14192360
    [No Abstract]   [Full Text] [Related]  

  • 18. A re-evaluation of silk measurement by the cecropia caterpillar (Hyalophora cecropia) during cocoon construction reveals use of a silk odometer that is temporally regulated.
    Sehadova H; Guerra PA; Sauman I; Reppert SM
    PLoS One; 2020; 15(2):e0228453. PubMed ID: 32074121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shotgun proteomic analysis of the fat body during metamorphosis of domesticated silkworm (Bombyx mori).
    Yang H; Zhou Z; Zhang H; Chen M; Li J; Ma Y; Zhong B
    Amino Acids; 2010 May; 38(5):1333-42. PubMed ID: 19730979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Storaged products and presence of acid phosphatase in fat body cells at pre-pupal worker stage of Apis mellifera Linnaeus, 1758 (Hymenoptera, Apidae).
    Poiani SB; da Cruz-Landim C
    Micron; 2012 Feb; 43(2-3):475-8. PubMed ID: 22172344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.