These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7013712)

  • 1. Simple filter paper procedure for estimation of glucose uptake via group translocation by whole-cell suspensions of bacteria.
    Germaine GR; Tellefson LM
    Appl Environ Microbiol; 1981 Mar; 41(3):837-9. PubMed ID: 7013712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promotion of Streptococcus mutans glucose transport by human whole saliva and parotid fluid.
    Germaine GR; Tellefson LM
    Infect Immun; 1985 Apr; 48(1):7-13. PubMed ID: 3980096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose uptake by Streptococcus mutans, Streptococcus mitis, and Actinomyces viscosus in the presence of human saliva.
    Germaine GR; Tellefson LM
    Infect Immun; 1982 Dec; 38(3):1060-7. PubMed ID: 7152663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protonmotive force driven 6-deoxyglucose uptake by the oral pathogen, Streptococcus mutans Ingbritt.
    Keevil CW; McDermid AS; Marsh PD; Ellwood DC
    Arch Microbiol; 1986 Nov; 146(2):118-24. PubMed ID: 3800553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of human saliva on glucose uptake by Streptococcus mutans and other oral microorganisms.
    Germaine GR; Tellefson LM
    Infect Immun; 1981 Feb; 31(2):598-607. PubMed ID: 7012014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of transmembrane movement of glucose and glucose analogs in Streptococcus mutants Ingbritt.
    Dashper SG; Reynolds EC
    J Bacteriol; 1990 Feb; 172(2):556-63. PubMed ID: 2298698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of hexitol catabolism in Streptococcus mutans.
    Dills SS; Seno S
    J Bacteriol; 1983 Feb; 153(2):861-6. PubMed ID: 6401708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the cell membrane in pH-dependent fluoride inhibition of glucose uptake by Streptococcus mutans.
    Germaine GR; Tellefson LM
    Antimicrob Agents Chemother; 1986 Jan; 29(1):58-61. PubMed ID: 3729335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluoride uptake by Streptococcus mutans 6715.
    Whitford GM; Schuster GS; Pashley DH; Venkateswarlu P
    Infect Immun; 1977 Dec; 18(3):680-7. PubMed ID: 22490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of galactose, glucose and their molecular analogues by Escherichia coli K12.
    Henderson PJ; Giddens RA; Jones-Mortimer MC
    Biochem J; 1977 Feb; 162(2):309-20. PubMed ID: 15558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of sugar transport via the multiple sugar metabolism operon of Streptococcus mutans by the phosphoenolpyruvate phosphotransferase system.
    Cvitkovitch DG; Boyd DA; Hamilton IR
    J Bacteriol; 1995 Oct; 177(19):5704-6. PubMed ID: 7559362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a competition model to the growth of Streptococcus mutans and Streptococcus sanguis in binary continuous culture.
    Kemp CW; Robrish SA; Curtis MA; Sharer SA; Bowen WH
    Appl Environ Microbiol; 1983 Apr; 45(4):1277-82. PubMed ID: 6344790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose uptake rates of single E. coli cells grown in glucose-limited chemostat cultures.
    Natarajan A; Srienc F
    J Microbiol Methods; 2000 Sep; 42(1):87-96. PubMed ID: 11000435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and simulation of complex interactions during dynamic microfiltration of Escherichia coli suspensions.
    Meyer F; Gehmlich I; Guthke R; Górak A; Knorre WA
    Biotechnol Bioeng; 1998 Jul; 59(2):189-202. PubMed ID: 10099330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of glucose and mannose by a common phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus mutans GS5.
    Liberman ES; Bleiweis AS
    Infect Immun; 1984 Mar; 43(3):1106-9. PubMed ID: 6698606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose transport across plasma membrane in human platelets.
    Leoncini G; Maresca M
    Ital J Biochem; 1986; 35(5):287-95. PubMed ID: 3804696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditional synthesis and utilization of 1,5-anhydroglucitol in Escherichia coli.
    Shiga Y; Mizuno H; Akanuma H
    J Bacteriol; 1993 Nov; 175(22):7138-41. PubMed ID: 8226660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A rapid and simple method for extracting intracellular metabolites from Escherichia coli bacteria].
    Potselueva MM
    Zh Mikrobiol Epidemiol Immunobiol; 1988 Oct; (10):11-5. PubMed ID: 3064500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system.
    Cvitkovitch DG; Boyd DA; Thevenot T; Hamilton IR
    J Bacteriol; 1995 May; 177(9):2251-8. PubMed ID: 7730250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of D-glucose transport into renal membrane vesicles: measurements using a vacuum manifold apparatus.
    Mamelok RD; Macrae DR; Hittelman K; Hoefer JP; Prusiner SB
    J Biochem Biophys Methods; 1981 Mar; 4(3-4):147-53. PubMed ID: 7240643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.