These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7013797)

  • 1. Changes in the solution structure of yeast phenylalanine transfer ribonucleic acid associated with aminoacylation and magnesium binding.
    Potts RO; Ford NC; Fournier MJ
    Biochemistry; 1981 Mar; 20(6):1653-9. PubMed ID: 7013797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of spermine in preventing misacylation by phenylalanyl-tRNA synthetase.
    Loftfield RB; Eigner EA; Pastuszyn A
    J Biol Chem; 1981 Jul; 256(13):6729-35. PubMed ID: 7016875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of acyl transfer ribonucleic acid complexes of Escherichia coli phenylalanyl-tRNA synthetase. A conformational change is rate limiting in catalysis.
    Baltzinger M; Holler E
    Biochemistry; 1982 May; 21(10):2460-7. PubMed ID: 7046786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutron scattering study of the binding of tRNAPhe to Escherichia coli phenylalanyl-tRNA synthetase.
    Dessen P; Ducruix A; Hountondji C; May RP; Blanquet S
    Biochemistry; 1983 Jan; 22(2):281-4. PubMed ID: 6337625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of salt-induced stimulation of tRNASer aminoacylation by yeast seryl-tRNA synthetase.
    Dibbelt L; Zachau HG
    FEBS Lett; 1981 Aug; 131(2):293-5. PubMed ID: 7028508
    [No Abstract]   [Full Text] [Related]  

  • 6. The aminoacyladenylate mechanism in the aminoacylation reaction of yeast phenylalanyl-tRNA synthetase.
    Fasiolo F; Fersht AR
    Eur J Biochem; 1978 Apr; 85(1):85-8. PubMed ID: 346352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminoacyl adenylate, a normal intermediate or a dead end in aminoacylation of transfer ribonucleic acid.
    Lagerkvist U; Akesson B; Brändén R
    J Biol Chem; 1977 Feb; 252(3):1002-6. PubMed ID: 320199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutual adaptation of yeast tRNAPhe and phenylalanyl-tRNA synthetase: Possible role of tryptophan residues and long range interactions.
    Lefevre JF; Ehrlich R; Kilhoffer MC; Remy P
    FEBS Lett; 1980 Jun; 114(2):219-24. PubMed ID: 6993228
    [No Abstract]   [Full Text] [Related]  

  • 9. Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli.
    Airas RK
    Eur J Biochem; 1996 Aug; 240(1):223-31. PubMed ID: 8797857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative study of the ionic interactions between yeast tRNA-Val and tRNA-Phe and their cognate aminoacyl-tRNA ligases.
    Bonnet J; Renaud M; Raffin JP; Remy P
    FEBS Lett; 1975 May; 53(2):154-8. PubMed ID: 1095410
    [No Abstract]   [Full Text] [Related]  

  • 11. Induced hydrolytic activity of yeast phenylalanyl-tRNA synthetase by tRNAPhe-CC.
    Kuhn W; Schneider FW
    Nucleic Acids Res; 1982 Apr; 10(7):2439-51. PubMed ID: 7045811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of spermine and magnesium ions on the aminoacylation of yeast tRNA(Tyr).
    Plohl M; Kućan Z
    Biochimie; 1988 May; 70(5):637-44. PubMed ID: 3139082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorimetric study of yeast tRNAPheCCF in the complex with phenylalanyl-tRNA synthetase. Evidence for a correlation between the structural adaptation of both macromolecules and the appearance of the acylation activity.
    Lefevre JF; Bacha H; Renaud M; Ehrlich R; Gangloff J; Von der Haar F; Remy P
    Eur J Biochem; 1981 Jul; 117(3):439-47. PubMed ID: 7026233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acceptor activity of tRNAPhe from yeasts under special conditions of aminoacylation.
    Belchev B; Yaneva M
    Mol Biol (Mosk); 1976; 10(4):663-7. PubMed ID: 15212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenylalanyl-tRNA synthetase from baker's yeast. Salt dependence of steady-state kinetics indicates two molecular forms of the enzyme.
    von der Haar F
    Eur J Biochem; 1976 May; 64(2):395-8. PubMed ID: 776618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of ligand-induced conformational changes in phenylalanyl-tRNA synthetase of Escherichia coli K10 by laser light scattering.
    Holler E; Wang CC; Ford NC
    Biochemistry; 1981 Feb; 20(4):861-7. PubMed ID: 7011376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific interaction of anticodon loop residues with yeast phenylalanyl-tRNA synthetase.
    Bruce AG; Uhlenbeck OC
    Biochemistry; 1982 Aug; 21(17):3921-6. PubMed ID: 6751381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc(II)-dependent synthesis of diadenosine 5', 5"' -P(1) ,P(4) -tetraphosphate by Escherichia coli and yeast phenylalanyl transfer ribonucleic acid synthetases.
    Plateau P; Mayaux JF; Blanquet S
    Biochemistry; 1981 Aug; 20(16):4654-62. PubMed ID: 7028092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Role of arginine residues in phenylalanyl-tRNA synthetase interaction with substrates].
    Gorshkova II; Datsiĭ II; Lavrik OI
    Mol Biol (Mosk); 1980; 14(1):118-25. PubMed ID: 7015113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence.
    Okabe N; Cramer F
    J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.