These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7014041)

  • 1. Metabolic aspects of the calorigenic effect of thyroid hormone in mammals.
    Sestoft L
    Clin Endocrinol (Oxf); 1980 Nov; 13(5):489-506. PubMed ID: 7014041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thyroid hormone action on intermediary metabolism. Part I: respiration, thermogenesis and carbohydrate metabolism.
    Müller MJ; Seitz HJ
    Klin Wochenschr; 1984 Jan; 62(1):11-8. PubMed ID: 6321848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of cellular respiration by thyroid hormone. Spectroscopic evidence of mitochondrial control in intact rat liver.
    Hassinen IE; Ylikahri RH; Kähönen MT
    Arch Biochem Biophys; 1971 Nov; 147(1):255-61. PubMed ID: 5114932
    [No Abstract]   [Full Text] [Related]  

  • 4. Relation among regional O2 consumption, high-energy phosphates, and substrate uptake in porcine right ventricle.
    Schwartz GG; Greyson CR; Wisneski JA; Garcia J; Steinman S
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H521-30. PubMed ID: 8141353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate-level regulation by Ca2+?
    Vuorinen KH; Ala-Rämi A; Yan Y; Ingman P; Hassinen IE
    J Mol Cell Cardiol; 1995 Aug; 27(8):1581-91. PubMed ID: 8523421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions.
    Harper ME; Brand MD
    Can J Physiol Pharmacol; 1994 Aug; 72(8):899-908. PubMed ID: 7834578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioenergetic scaling: metabolic design and body-size constraints in mammals.
    Dobson GP; Headrick JP
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7317-21. PubMed ID: 7638188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of coenzyme A and carnitine on steady-state ATP/ADP ratios and the rate of long-chain free fatty acid oxidation in liver mitochondria.
    Christiansen EN; Davis EJ
    Biochim Biophys Acta; 1978 Apr; 502(1):17-28. PubMed ID: 638140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative phosphorylation in brown adipose tissue mitochondria from rats kept under normal environmental conditions.
    Sugano T; Shimada M; Tatsumi H
    J Biochem; 1976 Jul; 80(1):177-86. PubMed ID: 965363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thyroid hormone action on intermediary metabolism. Part II: Lipid metabolism in hypo- and hyperthyroidism.
    Müller MJ; Seitz HJ
    Klin Wochenschr; 1984 Jan; 62(2):49-55. PubMed ID: 6708390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid thyroid-hormone effect on mitochondrial and cytosolic ATP/ADP ratios in the intact liver cell.
    Seitz HJ; Müller MJ; Soboll S
    Biochem J; 1985 Apr; 227(1):149-53. PubMed ID: 3994679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperthyroidism results in increased glycolytic capacity in the rat heart. A 31P-NMR study.
    Seymour AM; Eldar H; Radda GK
    Biochim Biophys Acta; 1990 Nov; 1055(2):107-16. PubMed ID: 2242380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation by thyroid hormone of coupled respiration and of respiration apparently not coupled to the synthesis of ATP in rat hepatocytes.
    Gregory RB; Berry MN
    J Biol Chem; 1992 May; 267(13):8903-8. PubMed ID: 1577728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of respiration in isolated mitochondria: quantitative evaluation of the dependence of respiratory rates on [ATP], [ADP], and [Pi].
    Holian A; Owen CS; Wilson DF
    Arch Biochem Biophys; 1977 May; 181(1):164-71. PubMed ID: 879801
    [No Abstract]   [Full Text] [Related]  

  • 15. A possible role of inorganic phosphate as a regulator of oxidative phosphorylation in combined urea synthesis and gluconeogenesis in perfused rat liver. A phosphorus magnetic resonance spectroscopy study.
    Tanaka A; Chance B; Quistorff B
    J Biol Chem; 1989 Jun; 264(17):10034-40. PubMed ID: 2722859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phosphorus-31 nuclear magnetic resonance study of effects of altered thyroid state on cardiac bioenergetics.
    Keogh JM; Matthews PM; Seymour AM; Radda GK
    Adv Myocardiol; 1985; 6():299-309. PubMed ID: 2986261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroid hormone effects on mitochondrial energetics.
    Harper ME; Seifert EL
    Thyroid; 2008 Feb; 18(2):145-56. PubMed ID: 18279015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of oxidative phosphorylation in hearts from euthyroid, hypothyroid, and hyperthyroid rats.
    Nishiki K; Erecińska M; Wilson DF; Cooper S
    Am J Physiol; 1978 Nov; 235(5):C212-9. PubMed ID: 215035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.